vqae_nb_epochs,
logger=None,
device=torch.device("cpu"),
+ device_storage=torch.device("cpu"),
):
self.batch_size = batch_size
self.device = device
nb_epochs=vqae_nb_epochs,
logger=logger,
device=device,
+ device_storage=device_storage,
)
print(f"{train_action_seq.size()=}")
- train_frame_seq = self.frame2seq(train_frames)
- test_frame_seq = self.frame2seq(test_frames)
+ train_frame_seq = self.frame2seq(train_frames).to(device_storage)
+ test_frame_seq = self.frame2seq(test_frames).to(device_storage)
nb_frame_codes = max(train_frame_seq.max(), test_frame_seq.max()) + 1
nb_action_codes = max(train_action_seq.max(), test_action_seq.max()) + 1
self.nb_codes = nb_frame_codes + nb_action_codes
train_frame_seq = train_frame_seq.reshape(train_frame_seq.size(0) // 2, 2, -1)
+ print(f"{train_action_seq.device=} {nb_frame_codes.device=}")
train_action_seq += nb_frame_codes
self.train_input = torch.cat(
(train_frame_seq[:, 0, :], train_action_seq, train_frame_seq[:, 1, :]), 1
for batch in tqdm.tqdm(
input.split(self.batch_size), dynamic_ncols=True, desc=desc
):
- yield batch
+ yield batch.to(self.device)
def vocabulary_size(self):
return self.nb_codes
2 * self.len_frame_seq + self.len_action_seq, device=self.device
)[None, :]
- input = self.test_input[:64]
+ input = self.test_input[:64].to(self.device)
result = input.clone()
ar_mask = (
acc_train_loss = 0.0
for input in tqdm.tqdm(train_input.split(batch_size), desc="vqae-train"):
+ input = input.to(device)
z = encoder(input)
zq = z if k < 2 else quantizer(z)
output = decoder(zq)
acc_test_loss = 0.0
for input in tqdm.tqdm(test_input.split(batch_size), desc="vqae-test"):
+ input = input.to(device)
z = encoder(input)
zq = z if k < 1 else quantizer(z)
output = decoder(zq)
nb_steps,
nb_epochs=10,
device=torch.device("cpu"),
+ device_storage=torch.device("cpu"),
logger=None,
):
assert mode in ["first_last"]
steps = [True] + [False] * (nb_steps + 1) + [True]
train_input, train_actions = generate_episodes(nb_train_samples, steps)
- train_input, train_actions = train_input.to(device), train_actions.to(device)
+ train_input, train_actions = train_input.to(device_storage), train_actions.to(device_storage)
test_input, test_actions = generate_episodes(nb_test_samples, steps)
- test_input, test_actions = test_input.to(device), test_actions.to(device)
+ test_input, test_actions = test_input.to(device_storage), test_actions.to(device_storage)
encoder, quantizer, decoder = train_encoder(
train_input, test_input, nb_epochs=nb_epochs, logger=logger, device=device
quantizer.train(False)
decoder.train(False)
- z = encoder(train_input[:1])
- pow2 = (2 ** torch.arange(z.size(1), device=z.device))[None, None, :]
+ z = encoder(train_input[:1].to(device))
+ pow2 = (2 ** torch.arange(z.size(1), device=device))[None, None, :]
z_h, z_w = z.size(2), z.size(3)
def frame2seq(input, batch_size=25):
seq = []
-
+ p = pow2.to(device)
for x in input.split(batch_size):
+ x=x.to(device)
z = encoder(x)
ze_bool = (quantizer(z) >= 0).long()
output = (
ze_bool.permute(0, 2, 3, 1).reshape(
ze_bool.size(0), -1, ze_bool.size(1)
)
- * pow2
+ * p
).sum(-1)
seq.append(output)
def seq2frame(input, batch_size=25, T=1e-2):
frames = []
-
+ p = pow2.to(device)
for seq in input.split(batch_size):
- zd_bool = (seq[:, :, None] // pow2) % 2
+ seq = seq.to(device)
+ zd_bool = (seq[:, :, None] // p) % 2
zd_bool = zd_bool.reshape(zd_bool.size(0), z_h, z_w, -1).permute(0, 3, 1, 2)
logits = decoder(zd_bool * 2.0 - 1.0)
logits = logits.reshape(