for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
i = (ar_mask.sum(0) > 0).nonzero()
if i.min() > 0:
- model(
- mygpt.BracketedSequence(input, 0, i.min())
- ) # Needed to initialize the model's cache
+ # Needed to initialize the model's cache
+ model(mygpt.BracketedSequence(input, 0, i.min()))
for s in range(i.min(), i.max() + 1):
output = model(mygpt.BracketedSequence(input, s, 1)).x
logits = output[:, s]
for input in task.batches(split="test"):
input = input.to(device)
- # input, loss_masks, true_images = task.excise_last_image(input)
- # input, loss_masks = task.add_true_image(input, true_images, loss_masks)
-
output = model(mygpt.BracketedSequence(input)).x
loss = F.cross_entropy(output.transpose(1, 2), input)
acc_test_loss += loss.item() * input.size(0)