nb_for_test=100,
min_ave_seq_logproba=None,
):
- kept = []
+ # We will store the generated quizzes for each number of
+ # correct prediction
+ recorded = dict([(n, []) for n in range(len(models) + 1)])
+
model_indexes = []
sum_logits, sum_nb_c_quizzes = 0, 0
+ nb_correct_to_validate = len(models) - 1
- while sum([x.size(0) for x in kept]) < nb_for_train + nb_for_test:
- nb_to_generate = nb_for_train + nb_for_test
+ while (
+ sum([x.size(0) for x in recorded[nb_correct_to_validate]])
+ < nb_for_train + nb_for_test
+ ):
+ nb_to_validate = nb_for_train + nb_for_test
if len(model_indexes) == 0:
model_indexes = [i.item() for i in torch.randperm(len(models))]
model = models[model_indexes.pop()]
new_c_quizzes, nb_correct, ave_seq_logproba = quizz_machine.create_c_quizzes(
- nb=nb_to_generate,
+ nb=nb_to_validate,
model_for_generation=model,
models_for_validation=models,
min_ave_seq_logproba=min_ave_seq_logproba,
sum_logits += new_c_quizzes.size(0) * ave_seq_logproba
sum_nb_c_quizzes += new_c_quizzes.size(0)
- to_keep = new_c_quizzes[nb_correct == len(models) - 1]
-
if args.dirty_debug:
- to_keep = new_c_quizzes[
- torch.randint(3, (new_c_quizzes.size(0),), device=new_c_quizzes.device)
- == 0
- ]
+ nb_correct = torch.randint(
+ len(models) + 1, nb_correct.size(), device=new_c_quizzes.device
+ )
+
+ for n in range(nb_correct.max() + 1):
+ recorded[n].append(new_c_quizzes[nb_correct == n].clone())
- kept.append(to_keep)
+ nb_validated = sum([x.size(0) for x in recorded[nb_correct_to_validate]])
+ nb_generated = sum(
+ [sum([x.size(0) for x in recorded[n]]) for n in recorded.keys()]
+ )
log_string(
- f"keep c_quizzes {to_keep.size(0)}/{new_c_quizzes.size(0)} ({to_keep.size(0)*100/new_c_quizzes.size(0):.02f}%) total {sum([ x.size(0) for x in kept])}/{nb_to_generate}"
+ f"keep c_quizzes {nb_validated*100/nb_generated:.02f}% kept total {nb_validated}/{nb_to_validate}"
)
- new_c_quizzes = torch.cat(kept, dim=0)
- new_c_quizzes = new_c_quizzes[
- torch.randperm(new_c_quizzes.size(0))[: nb_for_train + nb_for_test]
- ]
+ # concatenate and shuffle
+ for n in recorded.keys():
+ if len(recorded[n]) > 0:
+ q = torch.cat(recorded[n], dim=0)
+ q = q[torch.randperm(q.size(0), device=q.device)]
+ recorded[n] = q
+ else:
+ del recorded[n]
+
+ new_c_quizzes = recorded[nb_correct_to_validate][: nb_for_train + nb_for_test]
quizz_machine.store_c_quizzes(new_c_quizzes[:nb_for_train], for_train=True)
quizz_machine.store_c_quizzes(new_c_quizzes[nb_for_train:], for_train=False)
- quizz_machine.problem.save_quizzes(
- new_c_quizzes[:72],
- args.result_dir,
- f"culture_c_quiz_{n_epoch:04d}_{model.id:02d}",
- )
+ for n in recorded.keys():
+ s = "_validated" if n == nb_correct_to_validate else ""
+ quizz_machine.problem.save_quizzes(
+ recorded[n][:72],
+ args.result_dir,
+ f"culture_c_quiz_{n_epoch:04d}_N{n}{s}",
+ )
return sum_logits / sum_nb_c_quizzes