n = torch.arange(N, device=X.device)[:, None, None, None]
t = torch.arange(t0, t1, device=X.device)[None, None, :, None]
- dv = torch.arange(DV)[None, None, None, :]
- dk = torch.arange(DK)[None, None, None, :]
+ dv = torch.arange(DV, device=X.device)[None, None, None, :]
+ dk = torch.arange(DK, device=X.device)[None, None, None, :]
u = (
torch.rand(N, CH, t1 - t0, 1, device=X.device).mul(t).long() // CL
src_time = t - u - t0
src_head = torch.randint(H, (N, CH, t1 - t0, 1), device=X.device)
- mask_V = (torch.rand(N, CH, t1 - t0, DV) <= self.proba_flashback).long()
+ mask_V = (
+ torch.rand(N, CH, t1 - t0, DV, device=X.device) <= self.proba_flashback
+ ).long()
self.rec_V[:, :, t0:t1] = (
mask_V * V[n, src_head, src_time, dv]
+ (1 - mask_V) * self.rec_V[:, :, t0:t1]
)
- mask_K = (torch.rand(N, CH, t1 - t0, DK) <= self.proba_flashback).long()
+ mask_K = (
+ torch.rand(N, CH, t1 - t0, DK, device=X.device) <= self.proba_flashback
+ ).long()
self.rec_K[:, :, t0:t1] = (
mask_K * K[n, src_head, src_time, dk]
+ (1 - mask_K) * self.rec_K[:, :, t0:t1]