"--task",
type=str,
default="twotargets",
- help="file, byheart, learnop, guessop, mixing, memory, twotargets, addition, picoclvr, mnist, maze, snake, stack, expr, rpl, grid, qmlp, escape",
+ help="file, byheart, learnop, guessop, mixing, memory, twotargets, addition, picoclvr, mnist, maze, snake, stack, expr, rpl, grid, qmlp, greed",
)
parser.add_argument("--log_filename", type=str, default="train.log", help=" ")
parser.add_argument("--mixing_deterministic_start", action="store_true", default=False)
##############################
-# escape options
+# greed options
-parser.add_argument("--escape_height", type=int, default=5)
+parser.add_argument("--greed_height", type=int, default=5)
-parser.add_argument("--escape_width", type=int, default=7)
+parser.add_argument("--greed_width", type=int, default=7)
-parser.add_argument("--escape_T", type=int, default=25)
+parser.add_argument("--greed_T", type=int, default=25)
-parser.add_argument("--escape_nb_walls", type=int, default=5)
+parser.add_argument("--greed_nb_walls", type=int, default=5)
######################################################################
"nb_train_samples": 60000,
"nb_test_samples": 10000,
},
- "escape": {
+ "greed": {
"model": "37M",
"batch_size": 25,
"nb_train_samples": 25000,
device=device,
)
-elif args.task == "escape":
- task = tasks.Escape(
+elif args.task == "greed":
+ task = tasks.Greed(
nb_train_samples=args.nb_train_samples,
nb_test_samples=args.nb_test_samples,
batch_size=args.batch_size,
- height=args.escape_height,
- width=args.escape_width,
- T=args.escape_T,
- nb_walls=args.escape_nb_walls,
+ height=args.greed_height,
+ width=args.greed_width,
+ T=args.greed_T,
+ nb_walls=args.greed_nb_walls,
logger=log_string,
device=device,
)
######################################################################
-import escape
+import greed
-class Escape(Task):
+class Greed(Task):
def __init__(
self,
nb_train_samples,
self.height = height
self.width = width
- states, actions, rewards = escape.generate_episodes(
+ states, actions, rewards = greed.generate_episodes(
nb_train_samples + nb_test_samples, height, width, T, nb_walls
)
- seq = escape.episodes2seq(states, actions, rewards)
+ seq = greed.episodes2seq(states, actions, rewards)
# seq = seq[:, seq.size(1) // 3 : 2 * seq.size(1) // 3]
self.train_input = seq[:nb_train_samples].to(self.device)
self.test_input = seq[nb_train_samples:].to(self.device)
t % self.it_len == self.index_lookahead_reward
).long()
- batch = lr_mask * escape.lookahead_reward2code(2) + (1 - lr_mask) * batch
+ batch = lr_mask * greed.lookahead_reward2code(2) + (1 - lr_mask) * batch
yield batch
def vocabulary_size(self):
- return escape.nb_codes
+ return greed.nb_codes
def thinking_autoregression(
self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000
# Erase all the content but that of the first iteration
result[:, self.it_len :] = -1
# Set the lookahead_reward of the firs to UNKNOWN
- result[:, self.index_lookahead_reward] = escape.lookahead_reward2code(2)
+ result[:, self.index_lookahead_reward] = greed.lookahead_reward2code(2)
t = torch.arange(result.size(1), device=result.device)[None, :]
if u > 0:
result[
:, u + self.index_lookahead_reward
- ] = escape.lookahead_reward2code(2)
+ ] = greed.lookahead_reward2code(2)
ar_mask = (t >= u + self.index_states).long() * (
t < u + self.index_states + self.state_len
).long()
ar(result, ar_mask)
# Generate the action and reward with lookahead_reward to +1
- result[:, u + self.index_lookahead_reward] = escape.lookahead_reward2code(1)
+ result[:, u + self.index_lookahead_reward] = greed.lookahead_reward2code(1)
ar_mask = (t >= u + self.index_action).long() * (
t <= u + self.index_reward
).long()
ar(result, ar_mask)
# Set the lookahead_reward to UNKNOWN for the next iterations
- result[:, u + self.index_lookahead_reward] = escape.lookahead_reward2code(2)
+ result[:, u + self.index_lookahead_reward] = greed.lookahead_reward2code(2)
filename = os.path.join(result_dir, f"test_thinking_compute_{n_epoch:04d}.txt")
with open(filename, "w") as f:
for n in range(10):
for s in snapshots:
- lr, s, a, r = escape.seq2episodes(
+ lr, s, a, r = greed.seq2episodes(
s[n : n + 1], self.height, self.width
)
- str = escape.episodes2str(
+ str = greed.episodes2str(
lr, s, a, r, unicode=True, ansi_colors=True
)
f.write(str)
# Saving the generated sequences
- lr, s, a, r = escape.seq2episodes(result, self.height, self.width)
- str = escape.episodes2str(lr, s, a, r, unicode=True, ansi_colors=True)
+ lr, s, a, r = greed.seq2episodes(result, self.height, self.width)
+ str = greed.episodes2str(lr, s, a, r, unicode=True, ansi_colors=True)
filename = os.path.join(result_dir, f"test_thinking_seq_{n_epoch:04d}.txt")
with open(filename, "w") as f:
# Saving the ground truth
- lr, s, a, r = escape.seq2episodes(
+ lr, s, a, r = greed.seq2episodes(
result,
self.height,
self.width,
)
- str = escape.episodes2str(lr, s, a, r, unicode=True, ansi_colors=True)
+ str = greed.episodes2str(lr, s, a, r, unicode=True, ansi_colors=True)
filename = os.path.join(result_dir, f"test_true_seq_{n_epoch:04d}.txt")
with open(filename, "w") as f:
# Saving the generated sequences
- lr, s, a, r = escape.seq2episodes(
+ lr, s, a, r = greed.seq2episodes(
result,
self.height,
self.width,
)
- str = escape.episodes2str(lr, s, a, r, unicode=True, ansi_colors=True)
+ str = greed.episodes2str(lr, s, a, r, unicode=True, ansi_colors=True)
filename = os.path.join(result_dir, f"test_seq_{n_epoch:04d}.txt")
with open(filename, "w") as f: