# along with selector. If not, see <http://www.gnu.org/licenses/>.
import time
+import argparse
import torch
######################################################################
+parser = argparse.ArgumentParser(
+ description = 'Simple convnet test on the SVRT.',
+ formatter_class = argparse.ArgumentDefaultsHelpFormatter
+)
+
+parser.add_argument('--nb_train_samples',
+ type = int, default = 100000,
+ help = 'How many samples for train')
+
+parser.add_argument('--nb_test_samples',
+ type = int, default = 10000,
+ help = 'How many samples for test')
+
+parser.add_argument('--nb_epochs',
+ type = int, default = 25,
+ help = 'How many training epochs')
+
+args = parser.parse_args()
+
+######################################################################
+
+log_file = open('cnn-svrt.log', 'w')
+
+def log_string(s):
+ s = time.ctime() + ' ' + str(problem_number) + ' | ' + s
+ log_file.write(s + '\n')
+ log_file.flush()
+ print(s)
+
+######################################################################
+
def generate_set(p, n):
target = torch.LongTensor(n).bernoulli_(0.5)
input = svrt.generate_vignettes(p, target)
model.cuda()
criterion.cuda()
- nb_epochs = 25
optimizer, bs = optim.SGD(model.parameters(), lr = 1e-1), 100
- for k in range(0, nb_epochs):
- for b in range(0, nb_train_samples, bs):
+ for k in range(0, args.nb_epochs):
+ acc_loss = 0.0
+ for b in range(0, train_input.size(0), bs):
output = model.forward(train_input.narrow(0, b, bs))
loss = criterion(output, train_target.narrow(0, b, bs))
+ acc_loss = acc_loss + loss.data[0]
model.zero_grad()
loss.backward()
optimizer.step()
+ log_string('TRAIN_LOSS {:d} {:f}'.format(k, acc_loss))
return model
######################################################################
-def print_test_error(model, test_input, test_target):
- bs = 100
- nb_test_errors = 0
+def nb_errors(model, data_input, data_target, bs = 100):
+ ne = 0
- for b in range(0, nb_test_samples, bs):
- output = model.forward(test_input.narrow(0, b, bs))
+ for b in range(0, data_input.size(0), bs):
+ output = model.forward(data_input.narrow(0, b, bs))
wta_prediction = output.data.max(1)[1].view(-1)
for i in range(0, bs):
- if wta_prediction[i] != test_target.narrow(0, b, bs).data[i]:
- nb_test_errors = nb_test_errors + 1
+ if wta_prediction[i] != data_target.narrow(0, b, bs).data[i]:
+ ne = ne + 1
- print('TEST_ERROR {:.02f}% ({:d}/{:d})'.format(
- 100 * nb_test_errors / nb_test_samples,
- nb_test_errors,
- nb_test_samples)
- )
+ return ne
######################################################################
-nb_train_samples = 100000
-nb_test_samples = 10000
-
-for p in range(1, 24):
- print('-- PROBLEM #{:d} --'.format(p))
-
- t1 = time.time()
- train_input, train_target = generate_set(p, nb_train_samples)
- test_input, test_target = generate_set(p, nb_test_samples)
+for problem_number in range(1, 24):
+ train_input, train_target = generate_set(problem_number, args.nb_train_samples)
+ test_input, test_target = generate_set(problem_number, args.nb_test_samples)
if torch.cuda.is_available():
train_input, train_target = train_input.cuda(), train_target.cuda()
train_input.data.sub_(mu).div_(std)
test_input.data.sub_(mu).div_(std)
- t2 = time.time()
- print('[data generation {:.02f}s]'.format(t2 - t1))
model = train_model(train_input, train_target)
- t3 = time.time()
- print('[train {:.02f}s]'.format(t3 - t2))
- print_test_error(model, test_input, test_target)
-
- t4 = time.time()
+ nb_test_errors = nb_errors(model, test_input, test_target)
- print('[test {:.02f}s]'.format(t4 - t3))
- print()
+ log_string('TEST_ERROR {:.02f}% ({:d}/{:d})'.format(
+ 100 * nb_test_errors / test_input.size(0),
+ nb_test_errors,
+ test_input.size(0))
+ )
######################################################################