}
scalar_t Clusterer::distance_to_centroid(scalar_t *x, int k) {
- // We take the variance into account + the normalization term. This
- // is between k-mean and EM with a diagonal covariance
scalar_t dist = 0;
for(int d = 0; d < _dim; d++) {
dist += sq(_cluster_means[k][d] - x[d]) / (2 * _cluster_var[k][d]);
glp_add_cols(lp, nb_points * _nb_clusters);
+ // The column for gamma[n][k] point 1<=n<=nb_points and cluster
+ // 1<=k<=_nb_clusters is nb_points * (k - 1) + n;
+
// The constraints (A) will be expressed by putting directly bounds
// on the variables (i.e. one per column). So we need one row per
// (B) constraint, and one per (C) constraint.
glp_add_rows(lp, nb_points + _nb_clusters * nb_classes);
- // First, we set the weights for the objective function, and the
- // constraint on the individual gammas
+ // First, we set the weights for the objective function, and the (A)
+ // constraints on the individual gammas
for(int k = 1; k <= _nb_clusters; k++) {
for(int n = 1; n <= nb_points; n++) {