######################################################################
parser = argparse.ArgumentParser(
- description = 'Simple convnet test on the SVRT.',
+ description = "Convolutional networks for the SVRT. Written by Francois Fleuret, (C) Idiap research institute.",
formatter_class = argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument('--nb_train_samples',
- type = int, default = 100000,
- help = 'How many samples for train')
+ type = int, default = 100000)
parser.add_argument('--nb_test_samples',
- type = int, default = 10000,
- help = 'How many samples for test')
+ type = int, default = 10000)
parser.add_argument('--nb_epochs',
- type = int, default = 50,
- help = 'How many training epochs')
+ type = int, default = 50)
parser.add_argument('--batch_size',
- type = int, default = 100,
- help = 'Mini-batch size')
+ type = int, default = 100)
parser.add_argument('--log_file',
- type = str, default = 'default.log',
- help = 'Log file name')
+ type = str, default = 'default.log')
parser.add_argument('--compress_vignettes',
- action='store_true', default = False,
+ action='store_true', default = True,
help = 'Use lossless compression to reduce the memory footprint')
parser.add_argument('--deep_model',
- action='store_true', default = False,
+ action='store_true', default = True,
help = 'Use Afroze\'s Alexnet-like deep model')
parser.add_argument('--test_loaded_models',
pred_log_t = t
- s = Fore.BLUE + '[' + time.ctime() + '] ' + Fore.GREEN + elapsed + Style.RESET_ALL + ' ' + s
- log_file.write(s + '\n')
+ log_file.write('[' + time.ctime() + '] ' + elapsed + ' ' + s + '\n')
log_file.flush()
- print(s + Fore.CYAN + remark + Style.RESET_ALL)
+
+ print(Fore.BLUE + '[' + time.ctime() + '] ' + Fore.GREEN + elapsed + Style.RESET_ALL + ' ' + s + Fore.CYAN + remark + Style.RESET_ALL)
######################################################################