# i,j=q%self.height,q//self.height
# if
+ # @torch.compile
+ def task_puzzle(self, A, f_A, B, f_B):
+ S = 4
+ i0, j0 = (self.height - S) // 2, (self.width - S) // 2
+ c = torch.randperm(len(self.colors) - 1)[:4] + 1
+ for X, f_X in [(A, f_A), (B, f_B)]:
+ while True:
+ f_X[...] = 0
+ h = list(torch.randperm(c.size(0)))
+ n = torch.zeros(c.max() + 1)
+ for _ in range(2):
+ k = torch.randperm(S * S)
+ for q in k:
+ i, j = q % S + i0, q // S + j0
+ if f_X[i, j] == 0:
+ r, s, t, u = (
+ f_X[i - 1, j],
+ f_X[i, j - 1],
+ f_X[i + 1, j],
+ f_X[i, j + 1],
+ )
+ r, s, t, u = torch.tensor([r, s, t, u])[torch.randperm(4)]
+ if r > 0 and n[r] < 6:
+ n[r] += 1
+ f_X[i, j] = r
+ elif s > 0 and n[s] < 6:
+ n[s] += 1
+ f_X[i, j] = s
+ elif t > 0 and n[t] < 6:
+ n[t] += 1
+ f_X[i, j] = t
+ elif u > 0 and n[u] < 6:
+ n[u] += 1
+ f_X[i, j] = u
+ else:
+ if len(h) > 0:
+ d = c[h.pop()]
+ n[d] += 1
+ f_X[i, j] = d
+
+ if n.sum() == S * S:
+ break
+
+ k = 0
+ for d in range(4):
+ while True:
+ ii, jj = torch.randint(self.height, (1,)), torch.randint(
+ self.width, (1,)
+ )
+ e = 0
+ for i in range(S):
+ for j in range(S):
+ if (
+ ii + i >= self.height
+ or jj + j >= self.width
+ or (
+ f_X[i + i0, j + j0] == c[d]
+ and X[ii + i, jj + j] > 0
+ )
+ ):
+ e = 1
+ if e == 0:
+ break
+ for i in range(S):
+ for j in range(S):
+ if f_X[i + i0, j + j0] == c[d]:
+ X[ii + i, jj + j] = c[d]
+
######################################################################
def all_tasks(self):
# nb, nrow = 8, 2
# for t in grids.all_tasks():
- for t in [grids.task_path]:
+ for t in [grids.task_puzzle]:
print(t.__name__)
prompts, answers = grids.generate_prompts_and_answers_(nb, tasks=[t])
grids.save_quizzes("/tmp", t.__name__, prompts[:nb], answers[:nb], nrow=nrow)
- # exit(0)
+ exit(0)
nb = 1000
run_tests(model, quiz_machine, deterministic_synthesis=False)
- model.TRAINING_LOCK.release()
-
######################################################################
model.main_test_accuracy = 0.0
model.id = k
- model.TRAINING_LOCK = threading.Lock()
model.train_w_quizzes = quiz_machine.generate_token_sequences(args.nb_train_samples)
quiz_machine.reverse_random_half_in_place(model.train_w_quizzes)
weakest_models = ranked_models[: args.nb_gpus]
+ threads = []
+
for gpu_id, model in enumerate(weakest_models):
- model.TRAINING_LOCK.acquire()
+ log_string(f"training model {model.id}")
- log_string(
- f"training model {model.id} main_test_accuracy {model.main_test_accuracy}"
+ t = threading.Thread(
+ target=one_epoch, daemon=True, args=(model, quiz_machine, f"cuda:{gpu_id}")
)
- threading.Thread(
- target=one_epoch, daemon=True, args=(model, quiz_machine, f"cuda:{gpu_id}")
- ).start()
+ threads.append(t)
- for model in weakest_models:
- model.TRAINING_LOCK.acquire()
- model.TRAINING_LOCK.release()
+ t.start()
+
+ for t in threads:
+ t.join()
##################################################
# Replace a fraction of the w_quizzes with fresh ones