"--task",
type=str,
default="twotargets",
- help="byheart, learnop, guessop, twotargets, addition, picoclvr, mnist, maze, snake, stack, expr, rpl, grid, qmlp",
+ help="byheart, learnop, guessop, twocuts, twotargets, addition, picoclvr, mnist, maze, snake, stack, expr, rpl, grid, qmlp",
)
parser.add_argument("--log_filename", type=str, default="train.log", help=" ")
parser.add_argument("--expr_input_file", type=str, default=None)
+##############################
+# Misc
+
+parser.add_argument("--twocuts_no_global", action="store_true", default=False)
+
######################################################################
args = parser.parse_args()
"nb_train_samples": 50000,
"nb_test_samples": 10000,
},
+ "twocuts": {
+ "model": "37M",
+ "batch_size": 25,
+ "nb_train_samples": 100000,
+ "nb_test_samples": 10000,
+ },
"mnist": {
"model": "37M",
"batch_size": 10,
device=device,
)
+elif args.task == "twocuts":
+ task = tasks.SandBox(
+ problem=problems.ProblemTwoCuts(global_constraint = not args.twocuts_no_global),
+ nb_train_samples=args.nb_train_samples,
+ nb_test_samples=args.nb_test_samples,
+ batch_size=args.batch_size,
+ logger=log_string,
+ device=device,
+ )
+
elif args.task == "addition":
task = tasks.SandBox(
problem=problems.ProblemAddition(),
def seq2str(self, seq):
return "[NOT IMPLEMENTED]"
+ def compute_nb_correct(self, input, ar_mask, result):
+ nb_total = ar_mask.sum().item()
+ nb_correct = ((result == input).long() * ar_mask).sum().item()
+ return nb_total, nb_correct
+
+####################
+
+
+class ProblemTwoCuts(Problem):
+ def __init__(self, len_total=50, nb_values=100, global_constraint=True):
+ self.len_total = len_total
+ self.nb_values = nb_values
+ self.global_constraint = global_constraint
+
+ def generate_sequences_internal(self, nb):
+ return u,v,a,b,c
+
+ def generate_sequences(self,nb):
+
+ u = torch.randint(self.len_total, (nb,))
+ v = torch.randint(self.len_total, (nb,))
+
+ a = torch.randint(self.nb_values, (nb,))
+ b = torch.randint(self.nb_values, (nb,))
+ c = torch.randint(self.nb_values, (nb,))
+
+ while True:
+ to_compute = torch.logical_or(u>=v-self.len_total//10,u<v-self.len_total//5)
+ to_compute =torch.logical_or(to_compute, u == 0)
+ to_compute =torch.logical_or(to_compute, v == self.len_total)
+ n = to_compute.long().sum()
+ if n == 0:
+ break
+ else:
+ u[to_compute] = torch.randint(self.len_total, (n,))
+ v[to_compute] = torch.randint(self.len_total, (n,))
+
+ while True:
+ to_compute = a==b
+ to_compute = torch.logical_or(to_compute,b==c)
+ to_compute = torch.logical_or(to_compute,a==c)
+
+ if self.global_constraint:
+ to_compute = torch.logical_or(to_compute,(a*u+b*(v-u)+c*(self.len_total-v)) // self.len_total != self.nb_values//2)
+
+ n = to_compute.long().sum()
+ if n == 0:
+ break
+ else:
+ a[to_compute] = torch.randint(self.nb_values, (n,))
+ b[to_compute] = torch.randint(self.nb_values, (n,))
+ c[to_compute] = torch.randint(self.nb_values, (n,))
+
+ assert (u>=v).long().sum() == 0
+ assert (a==b).long().sum() == 0
+ assert (a==c).long().sum() == 0
+ assert (c==b).long().sum() == 0
+
+ t = torch.arange(self.len_total)
+ seq = (t[None,:] < u[:,None]).long() * a[:,None] + \
+ (t[None,:] >= u[:,None]).long() * (t[None,:] < v[:,None]).long() * b[:,None] + \
+ (t[None,:] >= v[:,None]).long() * c[:,None]
+
+ return seq,seq.new_full(seq.size(), 1, dtype=torch.int64)
+
+ def compute_nb_correct(self, input, ar_mask, result):
+ nb_total = result.size(0)
+ nb_correct = 0
+ i = torch.arange(result.size(1), device=result.device)
+
+ for k in range(nb_total):
+ s = result[k]
+ a = s[0]
+ uu = (s != a).nonzero()
+ if uu.size(0) > 0:
+ u = uu.min()
+ b = s[u]
+ vv = torch.logical_and(s != b, i >= u).nonzero()
+ if vv.size(0) > 0:
+ v = vv.min()
+ c = s[v]
+ ww = torch.logical_and(s != c, i >= v).nonzero()
+ if ww.size(0) == 0:
+ if not self.global_constraint or (a*u+b*(v-u)+c*(self.len_total-v)) // self.len_total == self.nb_values//2:
+ nb_correct += 1
+
+ return nb_total, nb_correct
+
+ def seq2str(self, seq):
+ return " ".join( [ f"{x:02d}" for x in seq ] )
####################
if __name__ == "__main__":
- p = ProblemTwoTargets(12, 4)
- s, m = p.generate_sequences(10)
- for x in s:
- print(p.seq2str(x))
+ p = ProblemTwoCuts(12)
+ s, m = p.generate_sequences(10000)
+ print(p.compute_nb_correct(None, None, s))
self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
+
# A bit of paranoia never hurts
assert (
self.nb_codes <= max_nb_codes
and self.train_input.min() >= 0
and self.test_input.min() >= 0
- and tuple(self.train_ar_mask.unique()) == (0, 1)
- and tuple(self.test_ar_mask.unique()) == (0, 1)
+ and tuple(x.item() for x in self.train_ar_mask.unique()) in { (0,), (1,), (0,1) }
+ and tuple(x.item() for x in self.test_ar_mask.unique()) in { (0,), (1,), (0,1) }
)
def batches(self, split="train", nb_to_use=-1, desc=None):
f" {n_epoch} ground truth {self.problem.seq2str(st)}"
)
- nb_total = ar_mask.sum().item()
- nb_correct = ((result == input).long() * ar_mask).sum().item()
+ nb_total, nb_correct = self.problem.compute_nb_correct(input, ar_mask, result)
+
+ # nb_total = ar_mask.sum().item()
+ # nb_correct = ((result == input).long() * ar_mask).sum().item()
return nb_total, nb_correct