self.cache_Y = X.new_zeros(N, T, DM)
+ V = torch.einsum("ntc,hdc->nhtd", X, self.w_V)
+ K = torch.einsum("ntc,hdc->nhtd", X, self.w_K)
+
######################################################################
# Compute the recurrent state
G = G / G.sum(1, keepdim=True).clamp(min=1)
- if self.training and self.proba_gate_dropout > 0.0:
- warnings.warn("gate dropout", RuntimeWarning)
- epsilon = 0.5
-
- V = torch.einsum("ntc,hdc->nhtd", X, self.w_V)
- K = torch.einsum("ntc,hdc->nhtd", X, self.w_K)
-
# We prepare the arguments for the parallel scan
A = 1 - G.sum(1)
gated_V = torch.einsum("nhet,nhtd->netd", G, V)
gated_K = torch.einsum("nhet,nhtd->netd", G, K)
- # Initial recurrent state
+ # We start from cached values, which matters in inference
init_rec_V = self.rec_V[:, :, t0 - CL : t0]
init_rec_K = self.rec_K[:, :, t0 - CL : t0]
+ if self.training and self.proba_gate_dropout > 0.0:
+ warnings.warn("gate dropout", RuntimeWarning)
+ epsilon = 0.5
+
#################################################################
# Associative scan