self.w_v = randw(nb_heads, dim_v, dim_in)
self.w_o = randw(dim_v * nb_heads, dim_in)
- def forward(self, bs_q, x_kv=None):
+ def forward(self, bs_q):
x_q = bs_q.x
- if x_kv is None:
- x_kv = x_q
if bs_q.first == 0:
self.cache_k = x_q.new_zeros(
- x_q.size(0), self.w_k.size(0), x_kv.size(1), self.w_k.size(1)
+ x_q.size(0), self.w_k.size(0), x_q.size(1), self.w_k.size(1)
)
self.cache_v = x_q.new_zeros(
- x_q.size(0), self.w_v.size(0), x_kv.size(1), self.w_v.size(1)
+ x_q.size(0), self.w_v.size(0), x_q.size(1), self.w_v.size(1)
)
self.cache_y = x_q.new_zeros(x_q.size(0), x_q.size(1), self.w_o.size(1))
"ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_q
)
self.cache_k[:, :, bs_q.first : bs_q.first + bs_q.nb] = torch.einsum(
- "ntc,hdc->nhtd", x_kv[:, bs_q.first : bs_q.first + bs_q.nb], self.w_k
+ "ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_k
)
self.cache_v[:, :, bs_q.first : bs_q.first + bs_q.nb] = torch.einsum(
- "ntc,hdc->nhtd", x_kv[:, bs_q.first : bs_q.first + bs_q.nb], self.w_v
+ "ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_v
)
a = torch.einsum(
if bs_q.first == 0:
self.cache_attzero = (
torch.arange(x_q.size(1), device=q.device)[None, None, :, None]
- < torch.arange(x_kv.size(1), device=q.device)[None, None, None, :]
+ < torch.arange(x_q.size(1), device=q.device)[None, None, None, :]
)
a = a.masked_fill(
self.cache_attzero[