parser.add_argument("--physical_batch_size", type=int, default=None)
-parser.add_argument("--inference_batch_size", type=int, default=50)
+parser.add_argument("--inference_batch_size", type=int, default=25)
parser.add_argument("--nb_train_samples", type=int, default=40000)
f"train_loss {n_epoch} model {model.id} {acc_train_loss/nb_train_samples}"
)
- # run_ae_test(model, other_models, quiz_machine, n_epoch, local_device=local_device)
+ run_ae_test(model, other_models, quiz_machine, n_epoch, local_device=local_device)
######################################################################
duration_max = 4 * 3600
- wanted_nb = 128
- nb_to_save = 128
-
- # wanted_nb = args.nb_train_samples // args.c_quiz_multiplier
- # nb_to_save = 256
+ wanted_nb = args.nb_train_samples // args.c_quiz_multiplier
+ nb_to_save = 256
with torch.autograd.no_grad():
records = [[] for _ in criteria]
# one_ae_epoch(models[0], models, quiz_machine, n_epoch, main_device)
# exit(0)
+ log_string(f"{time_train=} {time_c_quizzes=}")
+
if (
n_epoch >= 200
and min([m.test_accuracy for m in models]) > args.accuracy_to_make_c_quizzes