--- /dev/null
+
+######################################################################
+
+2024 Jan 07 21:37:48 (from mygpt.py)
+
+
+# This is one order of magnitude more complicated than I expected, not
+# elegant, slow, hopefully not buggy
+
+
+def flash_back_time_src(N, H, t0, t1, CL, CH, proba, device):
+ # starting flash backs
+ fb_start = (torch.rand(N, CH, t1 - t0, device=device) <= proba).long()
+ fb_start[:, :, -CL:] = 0
+ fb_start[:, :, :CL] = 0
+
+ # Remove series longer than CL
+ fb_body = fb_start.clone()
+ fb_body[:, :, CL + 1 :] -= fb_start[:, :, : -(CL + 1)]
+ fb_body = fb_body.cumsum(dim=2)
+ fb_start = fb_start * (fb_body == 1)
+
+ # Set a origin source time (starting time of the chunck to copy
+ # here) We set it as the current time minus a multiple of CL to be
+ # consistent with the "rolling" caterpillar
+ t = torch.arange(fb_start.size(2), device=fb_start.device)[None, None, :]
+ src_time = fb_start * (
+ t
+ - CL
+ * (
+ 1
+ + (
+ torch.rand(fb_start.size(), device=fb_start.device) * (t // CL - 1)
+ ).long()
+ )
+ )
+ src_time[:, :, CL:] -= src_time.clone()[:, :, :-CL]
+ src_time = src_time.cumsum(dim=2)
+
+ src_head = fb_start * torch.randint(H, fb_start.size(), device=fb_start.device)
+ src_head[:, :, CL:] -= src_head.clone()[:, :, :-CL]
+ src_head = src_head.cumsum(dim=2)
+
+ # combine
+ src_delta = fb_start.clone()
+ src_delta[:, :, CL:] -= fb_start[:, :, :-CL]
+ src_delta = src_delta.cumsum(dim=2)
+ src_delta[:, :, CL:] -= CL * fb_start[:, :, :-CL]
+ src_time += src_delta.cumsum(dim=2) - 1
+
+ return src_time, src_head
+
+
+def insert_flash_back(rec_V, V, rec_K, K, t0, t1, CL, proba):
+ N, H, CH = V.size(0), V.size(1), rec_V.size(1)
+
+ fbt, fbh = flash_back_time_src(N, H, t0, t1, CL, CH, proba, rec_V.device)
+
+ fbt_V = fbt[:, :, :, None]
+ fbh_V = fbh[:, :, :, None]
+ t = fbt_V.clamp(min=0)
+ n = torch.arange(V.size(0), device=V.device)[:, None, None, None]
+ d = torch.arange(V.size(3), device=V.device)[None, None, None, :]
+ q = V[:, :, t0:t1][n, fbh_V, t, d]
+ rec_V[:, :, t0:t1] = q * (fbt_V >= 0) + rec_V[:, :, t0:t1] * (fbt_V < 0)
+
+ fbt_K = fbt[:, :, :, None]
+ fbh_K = fbh[:, :, :, None]
+ t = fbt_K.clamp(min=0)
+ n = torch.arange(K.size(0), device=K.device)[:, None, None, None]
+ d = torch.arange(K.size(3), device=K.device)[None, None, None, :]
+ q = K[:, :, t0:t1][n, fbh_K, t, d]
+ rec_K[:, :, t0:t1] = q * (fbt_K >= 0) + rec_K[:, :, t0:t1] * (fbt_K < 0)
+
+
+######################################################################
##############################
-# This is one order of magnitude more complicated than I expected, not
-# elegant, slow, hopefully not buggy
-
-
-def flash_back_time_src(N, H, t0, t1, CL, CH, proba, device):
- # starting flash backs
- fb_start = (torch.rand(N, CH, t1 - t0, device=device) <= proba).long()
- fb_start[:, :, -CL:] = 0
- fb_start[:, :, :CL] = 0
-
- # Remove series longer than CL
- fb_body = fb_start.clone()
- fb_body[:, :, CL + 1 :] -= fb_start[:, :, : -(CL + 1)]
- fb_body = fb_body.cumsum(dim=2)
- fb_start = fb_start * (fb_body == 1)
-
- # Set a origin source time (starting time of the chunck to copy
- # here) We set it as the current time minus a multiple of CL to be
- # consistent with the "rolling" caterpillar
- t = torch.arange(fb_start.size(2), device=fb_start.device)[None, None, :]
- src_time = fb_start * (
- t
- - CL
- * (
- 1
- + (
- torch.rand(fb_start.size(), device=fb_start.device) * (t // CL - 1)
- ).long()
- )
- )
- src_time[:, :, CL:] -= src_time.clone()[:, :, :-CL]
- src_time = src_time.cumsum(dim=2)
-
- src_head = fb_start * torch.randint(H, fb_start.size(), device=fb_start.device)
- src_head[:, :, CL:] -= src_head.clone()[:, :, :-CL]
- src_head = src_head.cumsum(dim=2)
-
- # combine
- src_delta = fb_start.clone()
- src_delta[:, :, CL:] -= fb_start[:, :, :-CL]
- src_delta = src_delta.cumsum(dim=2)
- src_delta[:, :, CL:] -= CL * fb_start[:, :, :-CL]
- src_time += src_delta.cumsum(dim=2) - 1
-
- return src_time, src_head
-
-
-def insert_flash_back(rec_V, V, rec_K, K, t0, t1, CL, proba):
- N, H, CH = V.size(0), V.size(1), rec_V.size(1)
-
- fbt, fbh = flash_back_time_src(N, H, t0, t1, CL, CH, proba, rec_V.device)
-
- fbt_V = fbt[:, :, :, None]
- fbh_V = fbh[:, :, :, None]
- t = fbt_V.clamp(min=0)
- n = torch.arange(V.size(0), device=V.device)[:, None, None, None]
- d = torch.arange(V.size(3), device=V.device)[None, None, None, :]
- q = V[:, :, t0:t1][n, fbh_V, t, d]
- rec_V[:, :, t0:t1] = q * (fbt_V >= 0) + rec_V[:, :, t0:t1] * (fbt_V < 0)
-
- fbt_K = fbt[:, :, :, None]
- fbh_K = fbh[:, :, :, None]
- t = fbt_K.clamp(min=0)
- n = torch.arange(K.size(0), device=K.device)[:, None, None, None]
- d = torch.arange(K.size(3), device=K.device)[None, None, None, :]
- q = K[:, :, t0:t1][n, fbh_K, t, d]
- rec_K[:, :, t0:t1] = q * (fbt_K >= 0) + rec_K[:, :, t0:t1] * (fbt_K < 0)
-
-
-######################################################################
-
class Caterpillar(nn.Module):
def __init__(
if __name__ == "__main__":
import time, sys
+ ######################################################################
+
+ N, T, D = 16, 4096, 32
+
+ for r in range(timing.size(0)):
+ A = 0.9 + 0.1 * torch.rand(N, T, dtype=torch.float64).requires_grad_()
+ X = torch.randn(N, T, D, dtype=torch.float64).requires_grad_()
+ Y_init = torch.randn(N, D, dtype=torch.float64).requires_grad_()
+
+ start_time = time.perf_counter()
+ for _ in range(1000):
+ Y = pscan(A, X, Y_init)
+ duration = time.perf_counter() - start_time
+
+ ######################################################################
+
# A = torch.rand(17, 12, 3)
# X = torch.rand(17, 12, 3, 11)
# Y_init = torch.rand(17, 3, 11)
# exit(0)
err = 0
+ timing = torch.empty(10)
- for _ in range(100):
- N, T, D = 2, 112, 3
+ for r in range(timing.size(0)):
+ N, T, D = 2, 1120, 3
- T = torch.randint(10, (1,)).item() + 1
+ # T = torch.randint(10, (1,)).item() + 1
A = 0.9 + 0.1 * torch.rand(N, T, dtype=torch.float64).requires_grad_()
X = torch.randn(N, T, D, dtype=torch.float64).requires_grad_()
for _ in range(1000):
Y = pscan(A, X, Y_init)
duration = time.perf_counter() - start_time
+
print(f"duration {duration}")
+ timing[r] = duration
s = Y.sum()
# print((Y - torch.cat([Y1, Y2], dim=1)).abs().max())
- print(f"{err=}")
+ print(f"err={err:.2e} duration={timing.mean():.2e} (+/- {timing.std():.2e})")