--- /dev/null
+%% -*- mode: latex; mode: reftex; mode: flyspell; coding: utf-8; tex-command: "pdflatex.sh" -*-
+
+\documentclass[11pt,a4paper,twocolumn,twoside]{article}
+\usepackage[a4paper,top=2.5cm,bottom=2cm,left=2.5cm,right=2.5cm]{geometry}
+\usepackage[utf8]{inputenc}
+\usepackage{cmbright}
+
+\begin{document}
+
+\noindent One point per item if you know precisely the meaning of the
+listed word(s)
+
+\section{Machine Learning}
+
+\begin{enumerate}
+
+ \item VC dimension
+ \item over-fitting, under-fitting
+ \item logistic regression
+ \item Q-value
+ \item kernel trick
+ \item boosting
+ \item feature design
+ \item linear regression
+ \item expectation-maximization, GMM
+ \item SVM
+ \item Bellman equation
+ \item decision tree
+ \item train/validation/test sets
+ \item naive Bayesian model
+ \item autoregressive model
+ \item bias-variance dilemma
+ \item policy gradient
+ \item random forest
+ \item k-NN
+ \item perceptron algorithm
+
+\end{enumerate}
+
+
+\section{Deep-Learning}
+
+\begin{enumerate}
+
+ \item Adam
+ \item softmax
+ \item residual connections
+ \item autograd
+ \item ReLU
+ \item dropout
+ \item CLIP
+ \item Xavier's initialisation
+ \item Vanishing gradient
+ \item LeNet
+ \item ViT
+ \item transposed convolution layer
+ \item checkpoint (during the forward pass)
+ \item minibatch
+ \item masked model
+ \item supervised / unsupervised
+ \item data augmentation
+ \item attention block
+ \item SGD
+ \item batchnorm
+ \item gradient clipping
+ \item tokenizer
+ \item VAE
+ \item weight decay
+ \item GELU
+ \item LSTM, GRU
+ \item GAN
+ \item resnet
+ \item straight-through estimator
+ \item convolution layer
+ \item pre-training / fine-tuning
+ \item perplexity
+ \item logits
+ \item cls token
+ \item forward pass
+ \item Transformer (original one), GPT
+ \item backward pass
+ \item autoencoder, denoising autoencoder
+ \item layer norm
+ \item GNN
+ \item diffusion model
+ \item cross-entropy
+ \item max pooling, average pooling
+ \item RNN
+ \item contrastive loss
+ \item positional encoding
+ \item causal model
+ \item attention layer
+ \item SSL
+ \item MSE
+ \item positional encoding
+ \item tensor
+
+\end{enumerate}
+
+\section{Math}
+
+\begin{enumerate}
+ \item Hessian
+ \item random variable
+ \item matrix
+ \item entropy, mutual information
+ \item dot product
+ \item mean, variance
+ \item L2 norm
+ \item chain rule (differentiation)
+ \item Fourier transform
+ \item continuity, Lipschitz continuity
+ \item chain rule (probability)
+ \item polynomial
+ \item Cantor's diagonal argument
+ \item Jacobian
+ \item linear operator
+ \item gradient
+ \item Bayes' thorem
+ \item vector
+ \item joint law, product law
+ \item Gaussian distribution
+ \item distribution
+ \item determinant, rank
+ \item eigen-decomposition, svd
+ \item maximum likelihood
+ \item Central Limit Theorem
+
+\end{enumerate}
+
+\section{Compute Science}
+
+\begin{enumerate}
+
+ \item polymorphism
+ \item recursion
+ \item value passed by reference
+ \item binary search
+ \item quick sort
+ \item parallel scan
+ \item mutability
+ \item Turing machine
+ \item FP32
+ \item iterator
+ \item interpreter, compiler
+ \item anonymous function
+ \item set
+ \item binary heap
+ \item mutex
+ \item cache memory
+ \item scope of a variable or function
+ \item dynamic programming
+ \item hash table
+ \item big-O notation
+ \item Turing complete
+ \item class inheritance
+ \item closure
+ \item loop unrolling
+ \item complexity
+
+\end{enumerate}
+
+\end{document}