Update.
[picoclvr.git] / world.py
index fb5d5c7..d32d545 100755 (executable)
--- a/world.py
+++ b/world.py
@@ -1,6 +1,6 @@
 #!/usr/bin/env python
 
-import math
+import math, sys, tqdm
 
 import torch, torchvision
 
@@ -30,7 +30,7 @@ class Box:
         return False
 
 
-def scene2tensor(xh, yh, scene, size=64):
+def scene2tensor(xh, yh, scene, size):
     width, height = size, size
     pixel_map = torch.ByteTensor(width, height, 4).fill_(255)
     data = pixel_map.numpy()
@@ -85,7 +85,7 @@ def random_scene():
     return scene
 
 
-def sequence(nb_steps=10, all_frames=False):
+def generate_sequence(nb_steps=10, all_frames=False, size=64):
     delta = 0.1
     effects = [
         (False, 0, 0),
@@ -105,7 +105,7 @@ def sequence(nb_steps=10, all_frames=False):
         scene = random_scene()
         xh, yh = tuple(x.item() for x in torch.rand(2))
 
-        frames.append(scene2tensor(xh, yh, scene))
+        frames.append(scene2tensor(xh, yh, scene, size=size))
 
         actions = torch.randint(len(effects), (nb_steps,))
         change = False
@@ -138,10 +138,10 @@ def sequence(nb_steps=10, all_frames=False):
                     xh, yh = x, y
 
             if all_frames:
-                frames.append(scene2tensor(xh, yh, scene))
+                frames.append(scene2tensor(xh, yh, scene, size=size))
 
         if not all_frames:
-            frames.append(scene2tensor(xh, yh, scene))
+            frames.append(scene2tensor(xh, yh, scene, size=size))
 
         if change:
             break
@@ -203,12 +203,12 @@ def patchify(x, factor, invert_size=None):
     if invert_size is None:
         return (
             x.reshape(
-                x.size(0), #0
-                x.size(1), #1
-                factor, #2
-                x.size(2) // factor,#3
-                factor,#4
-                x.size(3) // factor,#5
+                x.size(0),  # 0
+                x.size(1),  # 1
+                factor,  # 2
+                x.size(2) // factor,  # 3
+                factor,  # 4
+                x.size(3) // factor,  # 5
             )
             .permute(0, 2, 4, 1, 3, 5)
             .reshape(-1, x.size(1), x.size(2) // factor, x.size(3) // factor)
@@ -216,44 +216,170 @@ def patchify(x, factor, invert_size=None):
     else:
         return (
             x.reshape(
-                invert_size[0], #0
-                factor, #1
-                factor, #2
-                invert_size[1], #3
-                invert_size[2] // factor, #4
-                invert_size[3] // factor, #5
+                invert_size[0],  # 0
+                factor,  # 1
+                factor,  # 2
+                invert_size[1],  # 3
+                invert_size[2] // factor,  # 4
+                invert_size[3] // factor,  # 5
             )
             .permute(0, 3, 1, 4, 2, 5)
             .reshape(invert_size)
         )
 
 
+class Normalizer(nn.Module):
+    def __init__(self, mu, std):
+        super().__init__()
+        self.mu = nn.Parameter(mu)
+        self.log_var = nn.Parameter(2 * torch.log(std))
+
+    def forward(self, x):
+        return (x - self.mu) / torch.exp(self.log_var / 2.0)
+
+
+class SignSTE(nn.Module):
+    def __init__(self):
+        super().__init__()
+
+    def forward(self, x):
+        # torch.sign() takes three values
+        s = (x >= 0).float() * 2 - 1
+        if self.training:
+            u = torch.tanh(x)
+            return s + u - u.detach()
+        else:
+            return s
+
+
+def train_encoder(
+    train_input,
+    dim_hidden=64,
+    block_size=16,
+    nb_bits_per_block=10,
+    lr_start=1e-3,
+    lr_end=1e-5,
+    nb_epochs=10,
+    batch_size=25,
+    device=torch.device("cpu"),
+):
+    mu, std = train_input.mean(), train_input.std()
+
+    encoder = nn.Sequential(
+        Normalizer(mu, std),
+        nn.Conv2d(3, dim_hidden, kernel_size=5, stride=1, padding=2),
+        nn.ReLU(),
+        nn.Conv2d(dim_hidden, dim_hidden, kernel_size=5, stride=1, padding=2),
+        nn.ReLU(),
+        nn.Conv2d(dim_hidden, dim_hidden, kernel_size=5, stride=1, padding=2),
+        nn.ReLU(),
+        nn.Conv2d(dim_hidden, dim_hidden, kernel_size=5, stride=1, padding=2),
+        nn.ReLU(),
+        nn.Conv2d(dim_hidden, dim_hidden, kernel_size=5, stride=1, padding=2),
+        nn.ReLU(),
+        nn.Conv2d(
+            dim_hidden,
+            nb_bits_per_block,
+            kernel_size=block_size,
+            stride=block_size,
+            padding=0,
+        ),
+        SignSTE(),
+    )
+
+    decoder = nn.Sequential(
+        nn.ConvTranspose2d(
+            nb_bits_per_block,
+            dim_hidden,
+            kernel_size=block_size,
+            stride=block_size,
+            padding=0,
+        ),
+        nn.ReLU(),
+        nn.Conv2d(dim_hidden, dim_hidden, kernel_size=5, stride=1, padding=2),
+        nn.ReLU(),
+        nn.Conv2d(dim_hidden, dim_hidden, kernel_size=5, stride=1, padding=2),
+        nn.ReLU(),
+        nn.Conv2d(dim_hidden, dim_hidden, kernel_size=5, stride=1, padding=2),
+        nn.ReLU(),
+        nn.Conv2d(dim_hidden, 3, kernel_size=5, stride=1, padding=2),
+    )
+
+    model = nn.Sequential(encoder, decoder)
+
+    nb_parameters = sum(p.numel() for p in model.parameters())
+
+    print(f"nb_parameters {nb_parameters}")
+
+    model.to(device)
+
+    for k in range(nb_epochs):
+        lr = math.exp(
+            math.log(lr_start) + math.log(lr_end / lr_start) / (nb_epochs - 1) * k
+        )
+        print(f"lr {lr}")
+        optimizer = torch.optim.Adam(model.parameters(), lr=lr)
+        acc_loss, nb_samples = 0.0, 0
+
+        for input in tqdm.tqdm(
+            train_input.split(batch_size),
+            dynamic_ncols=True,
+            desc="vqae-train",
+            total=train_input.size(0) // batch_size,
+        ):
+            output = model(input)
+            loss = F.mse_loss(output, input)
+            acc_loss += loss.item() * input.size(0)
+            nb_samples += input.size(0)
+
+            optimizer.zero_grad()
+            loss.backward()
+            optimizer.step()
+
+        print(f"loss {k} {acc_loss/nb_samples}")
+        sys.stdout.flush()
+
+    return encoder, decoder
+
+
+######################################################################
+
 if __name__ == "__main__":
     import time
 
     all_frames = []
-    nb = 1000
+    nb = 25000
     start_time = time.perf_counter()
-    for n in range(nb):
-        frames, actions = sequence(nb_steps=31)
+    for n in tqdm.tqdm(
+        range(nb),
+        dynamic_ncols=True,
+        desc="world-data",
+    ):
+        frames, actions = generate_sequence(nb_steps=31)
         all_frames += frames
     end_time = time.perf_counter()
     print(f"{nb / (end_time - start_time):.02f} samples per second")
 
     input = torch.cat(all_frames, 0)
-    x = patchify(input, 8)
-    y = x.reshape(x.size(0), -1)
-    print(f"{x.size()=} {y.size()=}")
-    centroids, t = kmeans(y, 4096)
-    results = centroids[t]
-    results = results.reshape(x.size())
-    results = patchify(results, 8, input.size())
+    encoder, decoder = train_encoder(input)
 
-    print(f"{input.size()=} {results.size()=}")
+    # x = patchify(input, 8)
+    # y = x.reshape(x.size(0), -1)
+    # print(f"{x.size()=} {y.size()=}")
+    # centroids, t = kmeans(y, 4096)
+    # results = centroids[t]
+    # results = results.reshape(x.size())
+    # results = patchify(results, 8, input.size())
+
+    z = encoder(input)
+    results = decoder(z)
+
+    print(f"{input.size()=} {z.size()=} {results.size()=}")
 
     torchvision.utils.save_image(input[:64], "orig.png", nrow=8)
+
     torchvision.utils.save_image(results[:64], "qtiz.png", nrow=8)
 
-    # frames, actions = sequence(nb_steps=31, all_frames=True)
+    # frames, actions = generate_sequence(nb_steps=31, all_frames=True)
     # frames = torch.cat(frames, 0)
     # torchvision.utils.save_image(frames, "seq.png", nrow=8)