Update.
[culture.git] / world.py
index 118a470..68f46de 100755 (executable)
--- a/world.py
+++ b/world.py
@@ -18,32 +18,159 @@ from torch.nn import functional as F
 colors = torch.tensor(
     [
         [255, 255, 255],
-        [0, 0, 0],
-        [255, 0, 0],
-        [0, 128, 0],
+        [255, 20, 147],
         [0, 0, 255],
-        [255, 200, 0],
+        [0, 192, 0],
+        [0, 255, 255],
         [192, 192, 192],
+        [106, 90, 205],
+        [255, 0, 0],
+        [220, 20, 60],
+        [65, 105, 225],
+        [255, 200, 0],
+        # [255, 182, 193],
+        # [75, 0, 130],
+        # [128, 0, 128],
+        # [30, 144, 255],
+        # [135, 206, 235],
+        # [0, 255, 0],
+        # [64, 224, 208],
+        # [250, 128, 114],
+        # [255, 165, 0],
+        # [0, 255, 255],
     ]
 )
 
-token2char = "_X" + "".join([str(n) for n in range(len(colors) - 2)]) + ">"
+token_background = 0
+first_bird_token = 1
+nb_bird_tokens = colors.size(0) - 1
+token_forward = first_bird_token + nb_bird_tokens
+token_backward = token_forward + 1
+
+token2char = "_" + "".join([chr(ord("A") + n) for n in range(len(colors) - 1)]) + "><"
 
 
 def generate(
     nb,
     height,
     width,
-    max_nb_obj=2,
+    nb_birds=3,
+    nb_iterations=1,
+):
+    pairs = []
+
+    for _ in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world generation"):
+        f_start = torch.zeros(height, width, dtype=torch.int64)
+
+        i, j, vi, vj = (
+            torch.empty(nb_birds, dtype=torch.int64),
+            torch.empty(nb_birds, dtype=torch.int64),
+            torch.empty(nb_birds, dtype=torch.int64),
+            torch.empty(nb_birds, dtype=torch.int64),
+        )
+
+        col = torch.randperm(colors.size(0) - 1)[:nb_birds].sort().values + 1
+
+        for n in range(nb_birds):
+            c = col[n]
+
+            while True:
+                i[n], j[n] = (
+                    torch.randint(height, (1,))[0],
+                    torch.randint(width, (1,))[0],
+                )
+                vm = torch.randint(4, (1,))[0]
+                vi[n], vj[n] = (vm % 2) * 2 - 1, (vm // 2) * 2 - 1
+                if (
+                    i[n] - vi[n] >= 0
+                    and i[n] - vi[n] < height
+                    and j[n] - vj[n] >= 0
+                    and j[n] - vj[n] < width
+                    and f_start[i[n], j[n]] == 0
+                    and f_start[i[n] - vi[n], j[n]] == 0
+                    and f_start[i[n], j[n] - vj[n]] == 0
+                ):
+                    break
+
+            f_start[i[n], j[n]] = c
+            f_start[i[n] - vi[n], j[n]] = c
+            f_start[i[n], j[n] - vj[n]] = c
+
+        f_end = f_start.clone()
+
+        for l in range(nb_iterations):
+            for n in range(nb_birds):
+                c = col[n]
+                f_end[i[n], j[n]] = 0
+                f_end[i[n] - vi[n], j[n]] = 0
+                f_end[i[n], j[n] - vj[n]] = 0
+
+                pi, pj, pvi, pvj = i[n].item(), j[n].item(), vi[n].item(), vj[n].item()
+
+                assert (
+                    f_end[i[n], j[n]] == 0
+                    and f_end[i[n] - vi[n], j[n]] == 0
+                    and f_end[i[n], j[n] - vj[n]] == 0
+                )
+
+                if (i[n] == 0 and vi[n] == -1) or (i[n] == height - 1 and vi[n] == 1):
+                    vi[n] = -vi[n]
+                if (j[n] == 0 and vj[n] == -1) or (j[n] == width - 1 and vj[n] == 1):
+                    vj[n] = -vj[n]
+
+                i[n] += vi[n]
+                j[n] += vj[n]
+
+                if not (
+                    f_end[i[n], j[n]] == 0
+                    and f_end[i[n] - vi[n], j[n]] == 0
+                    and f_end[i[n], j[n] - vj[n]] == 0
+                ):
+                    i[n], j[n], vi[n], vj[n] = pi, pj, pvi, pvj
+
+                f_end[i[n], j[n]] = c
+                f_end[i[n] - vi[n], j[n]] = c
+                f_end[i[n], j[n] - vj[n]] = c
+
+        pairs.append((f_start, f_end))
+
+    result = []
+    for p in pairs:
+        if torch.rand(1) < 0.5:
+            result.append(
+                torch.cat(
+                    [p[0].flatten(), torch.tensor([token_forward]), p[1].flatten()],
+                    dim=0,
+                )[None, :]
+            )
+        else:
+            result.append(
+                torch.cat(
+                    [p[1].flatten(), torch.tensor([token_backward]), p[0].flatten()],
+                    dim=0,
+                )[None, :]
+            )
+
+    return torch.cat(result, dim=0)
+
+
+def generate_(
+    nb,
+    height,
+    width,
+    nb_birds=3,
     nb_iterations=2,
 ):
-    f_start = torch.zeros(nb, height, width, dtype=torch.int64)
-    f_end = torch.zeros(nb, height, width, dtype=torch.int64)
-    n = torch.arange(f_start.size(0))
+    pairs = []
 
     for n in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world generation"):
-        nb_fish = torch.randint(max_nb_obj, (1,)).item() + 1
-        for c in torch.randperm(colors.size(0) - 2)[:nb_fish].sort().values:
+        f_start = torch.zeros(height, width, dtype=torch.int64)
+        f_end = torch.zeros(height, width, dtype=torch.int64)
+        n = torch.arange(f_start.size(0))
+
+        for c in (
+            (torch.randperm(nb_bird_tokens) + first_bird_token)[:nb_birds].sort().values
+        ):
             i, j = (
                 torch.randint(height - 2, (1,))[0] + 1,
                 torch.randint(width - 2, (1,))[0] + 1,
@@ -51,10 +178,10 @@ def generate(
             vm = torch.randint(4, (1,))[0]
             vi, vj = (vm // 2) * (2 * (vm % 2) - 1), (1 - vm // 2) * (2 * (vm % 2) - 1)
 
-            f_start[n, i, j] = c + 2
-            f_start[n, i - vi, j - vj] = c + 2
-            f_start[n, i + vj, j - vi] = c + 2
-            f_start[n, i - vj, j + vi] = c + 2
+            f_start[i, j] = c
+            f_start[i - vi, j - vj] = c
+            f_start[i + vj, j - vi] = c
+            f_start[i - vj, j + vi] = c
 
             for l in range(nb_iterations):
                 i += vi
@@ -66,42 +193,101 @@ def generate(
                     i += vi
                     j += vj
 
-            f_end[n, i, j] = c + 2
-            f_end[n, i - vi, j - vj] = c + 2
-            f_end[n, i + vj, j - vi] = c + 2
-            f_end[n, i - vj, j + vi] = c + 2
+            f_end[i, j] = c
+            f_end[i - vi, j - vj] = c
+            f_end[i + vj, j - vi] = c
+            f_end[i - vj, j + vi] = c
 
-    return torch.cat(
-        [
-            f_end.flatten(1),
-            torch.full((f_end.size(0), 1), len(colors)),
-            f_start.flatten(1),
-        ],
-        dim=1,
-    )
+        pairs.append((f_start, f_end))
 
+    result = []
+    for p in pairs:
+        if torch.rand(1) < 0.5:
+            result.append(
+                torch.cat(
+                    [p[0].flatten(), torch.tensor([token_forward]), p[1].flatten()],
+                    dim=0,
+                )[None, :]
+            )
+        else:
+            result.append(
+                torch.cat(
+                    [p[1].flatten(), torch.tensor([token_backward]), p[0].flatten()],
+                    dim=0,
+                )[None, :]
+            )
+
+    return torch.cat(result, dim=0)
+
+
+def sample2img(seq, height, width, upscale=15):
+    f_first = seq[:, : height * width].reshape(-1, height, width)
+    f_second = seq[:, height * width + 1 :].reshape(-1, height, width)
+    direction = seq[:, height * width]
+
+    def mosaic(x, upscale):
+        x = x.reshape(-1, height, width)
+        m = torch.logical_and(x >= 0, x < first_bird_token + nb_bird_tokens).long()
+        x = colors[x * m].permute(0, 3, 1, 2)
+        s = x.shape
+        x = x[:, :, :, None, :, None].expand(-1, -1, -1, upscale, -1, upscale)
+        x = x.reshape(s[0], s[1], s[2] * upscale, s[3] * upscale)
+
+        x[:, :, :, torch.arange(0, x.size(3), upscale)] = 0
+        x[:, :, torch.arange(0, x.size(2), upscale), :] = 0
+        x = x[:, :, 1:, 1:]
 
-def sample2img(seq, height, width):
-    f_start = seq[:, : height * width].reshape(-1, height, width)
-    f_start = (f_start >= len(colors)).long() + (f_start < len(colors)).long() * f_start
-    f_end = seq[:, height * width + 1 :].reshape(-1, height, width)
-    f_end = (f_end >= len(colors)).long() + (f_end < len(colors)).long() * f_end
+        for n in range(m.size(0)):
+            for i in range(m.size(1)):
+                for j in range(m.size(2)):
+                    if m[n, i, j] == 0:
+                        for k in range(2, upscale - 2):
+                            x[n, :, i * upscale + k, j * upscale + k] = 0
+                            x[n, :, i * upscale + upscale - 1 - k, j * upscale + k] = 0
 
-    img_f_start, img_f_end = colors[f_start], colors[f_end]
+        return x
 
-    img = torch.cat(
+    direction_symbol = torch.full((direction.size(0), height * upscale - 1, upscale), 0)
+    direction_symbol = colors[direction_symbol].permute(0, 3, 1, 2)
+    separator = torch.full((direction.size(0), 3, height * upscale - 1, 1), 0)
+
+    for n in range(direction_symbol.size(0)):
+        if direction[n] == token_forward:
+            for k in range(upscale):
+                direction_symbol[
+                    n,
+                    :,
+                    (height * upscale) // 2 - upscale // 2 + k,
+                    3 + upscale // 2 - abs(k - upscale // 2),
+                ] = 0
+        elif direction[n] == token_backward:
+            for k in range(upscale):
+                direction_symbol[
+                    n,
+                    :,
+                    (height * upscale) // 2 - upscale // 2 + k,
+                    3 + abs(k - upscale // 2),
+                ] = 0
+        else:
+            for k in range(2, upscale - 2):
+                direction_symbol[
+                    n, :, (height * upscale) // 2 - upscale // 2 + k, k
+                ] = 0
+                direction_symbol[
+                    n, :, (height * upscale) // 2 - upscale // 2 + k, upscale - 1 - k
+                ] = 0
+
+    return torch.cat(
         [
-            img_f_start,
-            torch.full(
-                (img_f_start.size(0), img_f_start.size(1), 1, img_f_start.size(3)), 1
-            ),
-            img_f_end,
+            mosaic(f_first, upscale),
+            separator,
+            direction_symbol,
+            separator,
+            mosaic(f_second, upscale),
         ],
-        dim=2,
+        dim=3,
     )
 
-    return img.permute(0, 3, 1, 2)
-
 
 def seq2str(seq):
     result = []
@@ -117,13 +303,18 @@ if __name__ == "__main__":
 
     height, width = 6, 8
     start_time = time.perf_counter()
-    seq = generate(nb=64, height=height, width=width, max_nb_obj=3)
+    seq = generate(nb=90, height=height, width=width)
     delay = time.perf_counter() - start_time
     print(f"{seq.size(0)/delay:02f} samples/s")
 
     print(seq2str(seq[:4]))
 
+    # m = (torch.rand(seq.size()) < 0.05).long()
+    # seq = (1 - m) * seq + m * 23
+
     img = sample2img(seq, height, width)
     print(img.size())
 
-    torchvision.utils.save_image(img.float() / 255.0, "world.png", nrow=8, padding=2)
+    torchvision.utils.save_image(
+        img.float() / 255.0, "/tmp/world.png", nrow=6, padding=6, pad_value=0
+    )