Update.
[culture.git] / world.py
index 5ba0f36..36aa1e9 100755 (executable)
--- a/world.py
+++ b/world.py
 #!/usr/bin/env python
 
-import math
+# Any copyright is dedicated to the Public Domain.
+# https://creativecommons.org/publicdomain/zero/1.0/
+
+# Written by Francois Fleuret <francois@fleuret.org>
+
+import math, sys, tqdm
 
 import torch, torchvision
 
 from torch import nn
 from torch.nn import functional as F
-import cairo
-
-
-class Box:
-    def __init__(self, x, y, w, h, r, g, b):
-        self.x = x
-        self.y = y
-        self.w = w
-        self.h = h
-        self.r = r
-        self.g = g
-        self.b = b
-
-    def collision(self, scene):
-        for c in scene:
-            if (
-                self is not c
-                and max(self.x, c.x) <= min(self.x + self.w, c.x + c.w)
-                and max(self.y, c.y) <= min(self.y + self.h, c.y + c.h)
-            ):
-                return True
-        return False
-
-
-def scene2tensor(xh, yh, scene, size=64):
-    width, height = size, size
-    pixel_map = torch.ByteTensor(width, height, 4).fill_(255)
-    data = pixel_map.numpy()
-    surface = cairo.ImageSurface.create_for_data(
-        data, cairo.FORMAT_ARGB32, width, height
-    )
 
-    ctx = cairo.Context(surface)
-    ctx.set_fill_rule(cairo.FILL_RULE_EVEN_ODD)
-
-    for b in scene:
-        ctx.move_to(b.x * size, b.y * size)
-        ctx.rel_line_to(b.w * size, 0)
-        ctx.rel_line_to(0, b.h * size)
-        ctx.rel_line_to(-b.w * size, 0)
-        ctx.close_path()
-        ctx.set_source_rgba(b.r, b.g, b.b, 1.0)
-        ctx.fill()
-
-    hs = size * 0.1
-    ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0)
-    ctx.move_to(xh * size - hs / 2, yh * size - hs / 2)
-    ctx.rel_line_to(hs, 0)
-    ctx.rel_line_to(0, hs)
-    ctx.rel_line_to(-hs, 0)
-    ctx.close_path()
-    ctx.fill()
-
-    return pixel_map[None, :, :, :3].flip(-1).permute(0, 3, 1, 2).float() / 255
-
-
-def random_scene():
-    scene = []
-    colors = [
-        (1.00, 0.00, 0.00),
-        (0.00, 1.00, 0.00),
-        (0.00, 0.00, 1.00),
-        (1.00, 1.00, 0.00),
-        (0.75, 0.75, 0.75),
-    ]
+######################################################################
 
-    for k in range(10):
-        wh = torch.rand(2) * 0.2 + 0.2
-        xy = torch.rand(2) * (1 - wh)
-        c = colors[torch.randint(len(colors), (1,))]
-        b = Box(
-            xy[0].item(), xy[1].item(), wh[0].item(), wh[1].item(), c[0], c[1], c[2]
-        )
-        if not b.collision(scene):
-            scene.append(b)
-
-    return scene
-
-
-def sequence(nb_steps=10, all_frames=False):
-    delta = 0.1
-    effects = [
-        (False, 0, 0),
-        (False, delta, 0),
-        (False, 0, delta),
-        (False, -delta, 0),
-        (False, 0, -delta),
-        (True, delta, 0),
-        (True, 0, delta),
-        (True, -delta, 0),
-        (True, 0, -delta),
+
+colors = torch.tensor(
+    [
+        [255, 255, 255],
+        [255, 0, 0],
+        [0, 192, 0],
+        [0, 0, 255],
+        [255, 192, 0],
+        [0, 255, 255],
+        [255, 0, 255],
+        [192, 255, 192],
+        [255, 192, 192],
+        [192, 192, 255],
+        [192, 192, 192],
     ]
+)
+
+token_background = 0
+first_bird_token = 1
+nb_bird_tokens = colors.size(0) - 1
+token_forward = first_bird_token + nb_bird_tokens
+token_backward = token_forward + 1
+
+token2char = "_" + "".join([chr(ord("A") + n) for n in range(len(colors) - 1)]) + "><"
+
+
+def generate_seq(
+    nb, height, width, nb_birds=3, nb_iterations=2, return_iterations=False
+):
+    pairs = []
+    kept_iterations = []
+
+    for _ in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world generation"):
+        while True:
+            iterations = []
+
+            f_start = torch.zeros(height, width, dtype=torch.int64)
+
+            i, j, vi, vj = (
+                torch.empty(nb_birds, dtype=torch.int64),
+                torch.empty(nb_birds, dtype=torch.int64),
+                torch.empty(nb_birds, dtype=torch.int64),
+                torch.empty(nb_birds, dtype=torch.int64),
+            )
+
+            col = torch.randperm(colors.size(0) - 1)[:nb_birds].sort().values + 1
+
+            for n in range(nb_birds):
+                c = col[n]
+
+                while True:
+                    i[n], j[n] = (
+                        torch.randint(height, (1,))[0],
+                        torch.randint(width, (1,))[0],
+                    )
+                    vm = torch.randint(4, (1,))[0]
+                    vi[n], vj[n] = (vm % 2) * 2 - 1, (vm // 2) * 2 - 1
+                    if (
+                        i[n] - vi[n] >= 0
+                        and i[n] - vi[n] < height
+                        and j[n] - vj[n] >= 0
+                        and j[n] - vj[n] < width
+                        and f_start[i[n], j[n]] == 0
+                        and f_start[i[n] - vi[n], j[n]] == 0
+                        and f_start[i[n], j[n] - vj[n]] == 0
+                    ):
+                        break
+
+                f_start[i[n], j[n]] = c
+                f_start[i[n] - vi[n], j[n]] = c
+                f_start[i[n], j[n] - vj[n]] = c
+
+            f_end = f_start.clone()
+
+            for l in range(nb_iterations):
+                iterations.append(f_end.clone())
+                f_end[...] = 0
+                nb_collisions = 0
+                for n in range(nb_birds):
+                    c = col[n]
+
+                    pi, pj, pvi, pvj = (
+                        i[n].item(),
+                        j[n].item(),
+                        vi[n].item(),
+                        vj[n].item(),
+                    )
+
+                    if (i[n] == 0 and vi[n] == -1) or (
+                        i[n] == height - 1 and vi[n] == 1
+                    ):
+                        vi[n] = -vi[n]
+                    if (j[n] == 0 and vj[n] == -1) or (
+                        j[n] == width - 1 and vj[n] == 1
+                    ):
+                        vj[n] = -vj[n]
+
+                    i[n] += vi[n]
+                    j[n] += vj[n]
+
+                    if not (
+                        f_end[i[n], j[n]] == 0
+                        and f_end[i[n] - vi[n], j[n]] == 0
+                        and f_end[i[n], j[n] - vj[n]] == 0
+                    ):
+                        nb_collisions += 1
+
+                    f_end[i[n], j[n]] = c
+                    f_end[i[n] - vi[n], j[n]] = c
+                    f_end[i[n], j[n] - vj[n]] = c
+
+            iterations.append(f_end.clone())
+
+            if nb_collisions == 0:
+                break
+
+        kept_iterations.append(iterations)
+        pairs.append((f_start, f_end))
+
+    result = []
+    for p in pairs:
+        if torch.rand(1) < 0.5:
+            result.append(
+                torch.cat(
+                    [p[0].flatten(), torch.tensor([token_forward]), p[1].flatten()],
+                    dim=0,
+                )[None, :]
+            )
+        else:
+            result.append(
+                torch.cat(
+                    [p[1].flatten(), torch.tensor([token_backward]), p[0].flatten()],
+                    dim=0,
+                )[None, :]
+            )
+
+    if return_iterations:
+        # iterations = torch.cat([ torch.cat([ x[None, None] for x in l], dim = 1) for l in kept_iterations ], dim=0)
+        return torch.cat(result, dim=0), kept_iterations
+    else:
+        return torch.cat(result, dim=0)
+
+
+######################################################################
+
 
-    while True:
-
-        frames =[]
-
-        scene = random_scene()
-        xh, yh = tuple(x.item() for x in torch.rand(2))
-
-        frames.append(scene2tensor(xh, yh, scene))
-
-        actions = torch.randint(len(effects), (nb_steps,))
-        change = False
-
-        for a in actions:
-            g, dx, dy = effects[a]
-            if g:
-                for b in scene:
-                    if b.x <= xh and b.x + b.w >= xh and b.y <= yh and b.y + b.h >= yh:
-                        x, y = b.x, b.y
-                        b.x += dx
-                        b.y += dy
-                        if (
-                            b.x < 0
-                            or b.y < 0
-                            or b.x + b.w > 1
-                            or b.y + b.h > 1
-                            or b.collision(scene)
-                        ):
-                            b.x, b.y = x, y
-                        else:
-                            xh += dx
-                            yh += dy
-                            change = True
-            else:
-                x, y = xh, yh
-                xh += dx
-                yh += dy
-                if xh < 0 or xh > 1 or yh < 0 or yh > 1:
-                    xh, yh = x, y
-
-            if all_frames:
-                frames.append(scene2tensor(xh, yh, scene))
-
-        if not all_frames:
-            frames.append(scene2tensor(xh, yh, scene))
-
-        if change:
-            break
-
-    return frames, actions
+def generate_seq_old(
+    nb,
+    height,
+    width,
+    nb_birds=3,
+    nb_iterations=2,
+):
+    pairs = []
 
+    for n in tqdm.tqdm(range(nb), dynamic_ncols=True, desc="world generation"):
+        f_start = torch.zeros(height, width, dtype=torch.int64)
+        f_end = torch.zeros(height, width, dtype=torch.int64)
+        n = torch.arange(f_start.size(0))
+
+        for c in (
+            (torch.randperm(nb_bird_tokens) + first_bird_token)[:nb_birds].sort().values
+        ):
+            i, j = (
+                torch.randint(height - 2, (1,))[0] + 1,
+                torch.randint(width - 2, (1,))[0] + 1,
+            )
+            vm = torch.randint(4, (1,))[0]
+            vi, vj = (vm // 2) * (2 * (vm % 2) - 1), (1 - vm // 2) * (2 * (vm % 2) - 1)
+
+            f_start[i, j] = c
+            f_start[i - vi, j - vj] = c
+            f_start[i + vj, j - vi] = c
+            f_start[i - vj, j + vi] = c
+
+            for l in range(nb_iterations):
+                i += vi
+                j += vj
+                if i < 0 or i >= height or j < 0 or j >= width:
+                    i -= vi
+                    j -= vj
+                    vi, vj = -vi, -vj
+                    i += vi
+                    j += vj
+
+            f_end[i, j] = c
+            f_end[i - vi, j - vj] = c
+            f_end[i + vj, j - vi] = c
+            f_end[i - vj, j + vi] = c
+
+        pairs.append((f_start, f_end))
+
+    result = []
+    for p in pairs:
+        if torch.rand(1) < 0.5:
+            result.append(
+                torch.cat(
+                    [p[0].flatten(), torch.tensor([token_forward]), p[1].flatten()],
+                    dim=0,
+                )[None, :]
+            )
+        else:
+            result.append(
+                torch.cat(
+                    [p[1].flatten(), torch.tensor([token_backward]), p[0].flatten()],
+                    dim=0,
+                )[None, :]
+            )
+
+    return torch.cat(result, dim=0)
+
+
+def frame2img(x, height, width, upscale=15):
+    x = x.reshape(-1, height, width)
+    m = torch.logical_and(x >= 0, x < first_bird_token + nb_bird_tokens).long()
+    x = colors[x * m].permute(0, 3, 1, 2)
+    s = x.shape
+    x = x[:, :, :, None, :, None].expand(-1, -1, -1, upscale, -1, upscale)
+    x = x.reshape(s[0], s[1], s[2] * upscale, s[3] * upscale)
+
+    x[:, :, :, torch.arange(0, x.size(3), upscale)] = 0
+    x[:, :, torch.arange(0, x.size(2), upscale), :] = 0
+    x = x[:, :, 1:, 1:]
+
+    for n in range(m.size(0)):
+        for i in range(m.size(1)):
+            for j in range(m.size(2)):
+                if m[n, i, j] == 0:
+                    for k in range(2, upscale - 2):
+                        x[n, :, i * upscale + k, j * upscale + k] = 0
+                        x[n, :, i * upscale + upscale - 1 - k, j * upscale + k] = 0
+
+    return x
+
+
+def seq2img(seq, height, width, upscale=15):
+    f_first = seq[:, : height * width].reshape(-1, height, width)
+    f_second = seq[:, height * width + 1 :].reshape(-1, height, width)
+    direction = seq[:, height * width]
+
+    direction_symbol = torch.full((direction.size(0), height * upscale - 1, upscale), 0)
+    direction_symbol = colors[direction_symbol].permute(0, 3, 1, 2)
+    separator = torch.full((direction.size(0), 3, height * upscale - 1, 1), 0)
+
+    for n in range(direction_symbol.size(0)):
+        if direction[n] == token_forward:
+            for k in range(upscale):
+                direction_symbol[
+                    n,
+                    :,
+                    (height * upscale) // 2 - upscale // 2 + k,
+                    3 + upscale // 2 - abs(k - upscale // 2),
+                ] = 0
+        elif direction[n] == token_backward:
+            for k in range(upscale):
+                direction_symbol[
+                    n,
+                    :,
+                    (height * upscale) // 2 - upscale // 2 + k,
+                    3 + abs(k - upscale // 2),
+                ] = 0
+        else:
+            for k in range(2, upscale - 2):
+                direction_symbol[
+                    n, :, (height * upscale) // 2 - upscale // 2 + k, k
+                ] = 0
+                direction_symbol[
+                    n, :, (height * upscale) // 2 - upscale // 2 + k, upscale - 1 - k
+                ] = 0
+
+    return torch.cat(
+        [
+            frame2img(f_first, height, width, upscale),
+            separator,
+            direction_symbol,
+            separator,
+            frame2img(f_second, height, width, upscale),
+        ],
+        dim=3,
+    )
+
+
+def seq2str(seq):
+    result = []
+    for s in seq:
+        result.append("".join([token2char[v] for v in s]))
+    return result
+
+
+######################################################################
 
 if __name__ == "__main__":
-    frames, actions = sequence(nb_steps=31,all_frames=True)
-    frames = torch.cat(frames,0)
-    print(f"{frames.size()=}")
-    torchvision.utils.save_image(frames, "seq.png", nrow=8)
+    import time
+
+    height, width = 6, 8
+    start_time = time.perf_counter()
+    seq, it = generate_seq(
+        nb=64, height=height, width=width, nb_iterations=100, return_iterations=True
+    )
+    delay = time.perf_counter() - start_time
+    print(f"{seq.size(0)/delay:02f} samples/s")
+
+    print(seq2str(seq[:4]))
+
+    for t in range(len(it[0])):
+        img = torch.cat([frame2img(f[t], height, width) for f in it], dim=0)
+        torchvision.utils.save_image(
+            img.float() / 255.0,
+            f"/tmp/frame_{t:03d}.png",
+            nrow=8,
+            padding=6,
+            pad_value=0,
+        )
+
+    # m = (torch.rand(seq.size()) < 0.05).long()
+    # seq = (1 - m) * seq + m * 23
+
+    img = seq2img(seq, height, width)
+    print(img.size())
+
+    torchvision.utils.save_image(
+        img.float() / 255.0, "/tmp/world.png", nrow=6, padding=6, pad_value=0
+    )