Update.
[picoclvr.git] / tasks.py
index 8fe89be..eef84af 100755 (executable)
--- a/tasks.py
+++ b/tasks.py
@@ -20,6 +20,8 @@ def masked_inplace_autoregression(
     progress_bar_desc="autoregression",
     device=torch.device("cpu"),
 ):
+    assert input.size() == ar_mask.size()
+
     batches = zip(input.split(batch_size), ar_mask.split(batch_size))
 
     if progress_bar_desc is not None:
@@ -27,13 +29,22 @@ def masked_inplace_autoregression(
             batches,
             dynamic_ncols=True,
             desc=progress_bar_desc,
-            total=input.size(0) // batch_size,
+            total=input.size(0) // batch_size,
         )
 
-    for input, ar_mask in batches:
-        model.masked_inplace_autoregression(
-            input, ar_mask, forbidden_tokens, deterministic_synthesis
-        )
+    with torch.autograd.no_grad():
+        t = model.training
+        model.eval()
+
+        for input, ar_mask in batches:
+            model.masked_inplace_autoregression(
+                input, ar_mask, forbidden_tokens, deterministic_synthesis
+            )
+
+        model.train(t)
+
+
+######################################################################
 
 
 class Task:
@@ -51,6 +62,112 @@ class Task:
 
 ######################################################################
 
+
+class Problem:
+    def generate_sequences(self, nb):
+        pass
+
+    def log_performance(self, sequences, logger):
+        pass
+
+
+class ProblemByheart(Problem):
+    def __init__(self):
+        nb_seq, len_prompt, len_result = 100, 5, 5
+        self.seq = torch.randint(10, (nb_seq, len_prompt + 1 + len_result))
+        self.seq[:, len_prompt] = 10
+
+    def generate_sequences(self, nb):
+        sequences = self.seq[torch.randint(self.seq.size(0), (nb,))]
+        ar_mask = (sequences==10).long()
+        ar_mask = (ar_mask.cumsum(1) - ar_mask).clamp(max=1)
+        return sequences, ar_mask
+
+        # problems = [ProblemByheart()]
+        # nb_common_codes = 100
+
+        # def generate_sequences(nb_samples):
+            # problem_indexes = torch.randint(len(problems), (nb_samples,))
+            # nb_samples_per_problem = torch.one_hot(problem_indexes).sum(0)
+            # print(f"{nb_samples_per_problem}")
+            # all_seq = []
+            # for nb, p in zip(nb_samples_per_problem, problems):
+                # all_seq.append(p.generate_sequences(nb_samples_per_problem[nb]))
+            # return all_seq
+
+        # for strain, stest in zip(train_seq, test_seq):
+            # s = torch.cat((strain, stest), 0)
+
+class SandBox(Task):
+    def __init__(
+        self,
+        problem,
+        nb_train_samples,
+        nb_test_samples,
+        batch_size,
+        logger=None,
+        device=torch.device("cpu"),
+    ):
+        super().__init__()
+
+        self.batch_size = batch_size
+        self.device = device
+
+        self.train_input, self.train_ar_mask = problem.generate_sequences(nb_train_samples)
+        self.test_input, self.test_ar_mask = problem.generate_sequences(nb_test_samples)
+
+        self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
+
+    def batches(self, split="train", nb_to_use=-1, desc=None):
+        assert split in {"train", "test"}
+        input = self.train_input if split == "train" else self.test_input
+        if nb_to_use > 0:
+            input = input[:nb_to_use]
+        if desc is None:
+            desc = f"epoch-{split}"
+        for batch in tqdm.tqdm(
+            input.split(self.batch_size), dynamic_ncols=True, desc=desc
+        ):
+            yield batch
+
+    def vocabulary_size(self):
+        return self.nb_codes
+
+    def produce_results(
+        self, n_epoch, model, result_dir, logger, deterministic_synthesis
+    ):
+
+        def compute_accuracy(input, ar_mask):
+            result = input.clone() * (1-ar_mask)
+            masked_inplace_autoregression(
+                model,
+                self.batch_size,
+                result,
+                ar_mask,
+                deterministic_synthesis,
+                progress_bar_desc=None,
+                device=self.device,
+            )
+
+            nb_total = ar_mask.sum().item()
+            nb_correct = ((result==input).long() * ar_mask).sum().item()
+
+            return nb_total, nb_correct
+
+        train_nb_total, train_nb_correct = compute_accuracy(self.train_input, self.train_ar_mask)
+
+        logger(
+            f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
+        )
+
+        test_nb_total, test_nb_correct = compute_accuracy(self.test_input, self.test_ar_mask)
+
+        logger(
+            f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+        )
+
+######################################################################
+
 import picoclvr
 
 
@@ -97,6 +214,8 @@ class PicoCLVR(Task):
         pruner_train=None,
         pruner_eval=None,
     ):
+        super().__init__()
+
         def generate_descr(nb, cache_suffix, pruner):
             return picoclvr.generate(
                 nb,
@@ -285,6 +404,8 @@ class MNIST(Task):
     def __init__(
         self, nb_train_samples, nb_test_samples, batch_size, device=torch.device("cpu")
     ):
+        super().__init__()
+
         self.nb_train_samples = (nb_train_samples,)
         self.nb_test_samples = (nb_test_samples,)
         self.batch_size = batch_size
@@ -355,6 +476,8 @@ class Maze(Task):
         nb_walls,
         device=torch.device("cpu"),
     ):
+        super().__init__()
+
         self.batch_size = batch_size
         self.height = height
         self.width = width
@@ -447,70 +570,64 @@ class Maze(Task):
     def produce_results(
         self, n_epoch, model, result_dir, logger, deterministic_synthesis
     ):
-        with torch.autograd.no_grad():
-            t = model.training
-            model.eval()
-
-            train_nb_total, train_nb_correct, count = self.compute_error(
-                model,
-                "train",
-                nb_to_use=1000,
-                deterministic_synthesis=deterministic_synthesis,
-            )
-            logger(
-                f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
-            )
-
-            test_nb_total, test_nb_correct, count = self.compute_error(
-                model,
-                "test",
-                nb_to_use=1000,
-                deterministic_synthesis=deterministic_synthesis,
-            )
-            logger(
-                f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
-            )
+        train_nb_total, train_nb_correct, count = self.compute_error(
+            model,
+            "train",
+            nb_to_use=1000,
+            deterministic_synthesis=deterministic_synthesis,
+        )
+        logger(
+            f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
+        )
 
-            if count is not None:
-                proportion_optimal = count.diagonal().sum().float() / count.sum()
-                logger(f"proportion_optimal_test {proportion_optimal*100:.02f}%")
-                with open(
-                    os.path.join(result_dir, f"maze_result_{n_epoch:04d}.txt"), "w"
-                ) as f:
-                    for i in range(count.size(0)):
-                        for j in range(count.size(1)):
-                            eol = " " if j < count.size(1) - 1 else "\n"
-                            f.write(f"{count[i,j]}{eol}")
-
-            input = self.test_input[:48]
-            result = input.clone()
-            ar_mask = result.new_zeros(result.size())
-            ar_mask[:, self.height * self.width :] = 1
-            result *= 1 - ar_mask
-            masked_inplace_autoregression(
-                model,
-                self.batch_size,
-                result,
-                ar_mask,
-                deterministic_synthesis,
-                device=self.device,
-            )
+        test_nb_total, test_nb_correct, count = self.compute_error(
+            model,
+            "test",
+            nb_to_use=1000,
+            deterministic_synthesis=deterministic_synthesis,
+        )
+        logger(
+            f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+        )
 
-            mazes, paths = self.seq2map(input)
-            _, predicted_paths = self.seq2map(result)
-
-            filename = os.path.join(result_dir, f"maze_result_{n_epoch:04d}.png")
-            maze.save_image(
-                filename,
-                mazes=mazes,
-                target_paths=paths,
-                predicted_paths=predicted_paths,
-                path_correct=maze.path_correctness(mazes, predicted_paths),
-                path_optimal=maze.path_optimality(paths, predicted_paths),
-            )
-            logger(f"wrote {filename}")
+        if count is not None:
+            proportion_optimal = count.diagonal().sum().float() / count.sum()
+            logger(f"proportion_optimal_test {proportion_optimal*100:.02f}%")
+            with open(
+                os.path.join(result_dir, f"maze_result_{n_epoch:04d}.txt"), "w"
+            ) as f:
+                for i in range(count.size(0)):
+                    for j in range(count.size(1)):
+                        eol = " " if j < count.size(1) - 1 else "\n"
+                        f.write(f"{count[i,j]}{eol}")
+
+        input = self.test_input[:48]
+        result = input.clone()
+        ar_mask = result.new_zeros(result.size())
+        ar_mask[:, self.height * self.width :] = 1
+        result *= 1 - ar_mask
+        masked_inplace_autoregression(
+            model,
+            self.batch_size,
+            result,
+            ar_mask,
+            deterministic_synthesis,
+            device=self.device,
+        )
 
-            model.train(t)
+        mazes, paths = self.seq2map(input)
+        _, predicted_paths = self.seq2map(result)
+
+        filename = os.path.join(result_dir, f"maze_result_{n_epoch:04d}.png")
+        maze.save_image(
+            filename,
+            mazes=mazes,
+            target_paths=paths,
+            predicted_paths=predicted_paths,
+            path_correct=maze.path_correctness(mazes, predicted_paths),
+            path_optimal=maze.path_optimality(paths, predicted_paths),
+        )
+        logger(f"wrote {filename}")
 
 
 ######################################################################
@@ -532,6 +649,8 @@ class Snake(Task):
         prompt_length,
         device=torch.device("cpu"),
     ):
+        super().__init__()
+
         self.batch_size = batch_size
         self.height = height
         self.width = width
@@ -577,59 +696,38 @@ class Snake(Task):
     def produce_results(
         self, n_epoch, model, result_dir, logger, deterministic_synthesis
     ):
-        with torch.autograd.no_grad():
-            t = model.training
-            model.eval()
-
-            def compute_nb_correct(input, prior_visits):
-                result = input.clone()
-                i = torch.arange(result.size(1), device=result.device)[None, :]
-                ar_mask = (
-                    torch.logical_and(i >= self.prompt_length * 2, i % 2 == 0)
-                    .long()
-                    .expand_as(result)
-                )
-                result *= 1 - ar_mask
-
-                # snake.solver(result,ar_mask)
-
-                masked_inplace_autoregression(
-                    model,
-                    self.batch_size,
-                    result,
-                    ar_mask,
-                    deterministic_synthesis,
-                    device=self.device,
-                )
-
-                nb_total = ((prior_visits > 0) * ar_mask).sum()
-
-                nb_correct = (
-                    (result == input).long() * (prior_visits > 0) * ar_mask
-                ).sum()
-
-                # nb_total = result.size(0)
-                # nb_correct = ((result - input).abs().sum(1) == 0).sum()
+        def compute_nb_correct(input, prior_visits):
+            result = input.clone()
+            i = torch.arange(result.size(1), device=result.device)[None, :]
+            ar_mask = (
+                torch.logical_and(i >= self.prompt_length * 2, i % 2 == 0)
+                .long()
+                .expand_as(result)
+            )
+            result *= 1 - ar_mask
 
-                return nb_total, nb_correct
+            masked_inplace_autoregression(
+                model,
+                self.batch_size,
+                result,
+                ar_mask,
+                deterministic_synthesis,
+                device=self.device,
+            )
 
-            # train_nb_total, train_nb_correct = compute_nb_correct(
-            # self.train_input, self.train_prior_visits
-            # )
+            nb_total = ((prior_visits > 0) * ar_mask).sum()
 
-            # logger(
-            # f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
-            # )
+            nb_correct = ((result == input).long() * (prior_visits > 0) * ar_mask).sum()
 
-            test_nb_total, test_nb_correct = compute_nb_correct(
-                self.test_input[:1000], self.test_prior_visits[:1000]
-            )
+            return nb_total, nb_correct
 
-            logger(
-                f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
-            )
+        test_nb_total, test_nb_correct = compute_nb_correct(
+            self.test_input[:1000], self.test_prior_visits[:1000]
+        )
 
-            model.train(t)
+        logger(
+            f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+        )
 
 
 ######################################################################
@@ -651,6 +749,8 @@ class Stack(Task):
         fraction_values_for_train=None,
         device=torch.device("cpu"),
     ):
+        super().__init__()
+
         self.batch_size = batch_size
         self.nb_steps = nb_steps
         self.nb_stacks = nb_stacks
@@ -709,51 +809,10 @@ class Stack(Task):
     def produce_results(
         self, n_epoch, model, result_dir, logger, deterministic_synthesis
     ):
-        with torch.autograd.no_grad():
-            t = model.training
-            model.eval()
-
-            def compute_nb_correct(input):
-                result = input.clone()
-                stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
-                ar_mask = (result != input).long()
-                masked_inplace_autoregression(
-                    model,
-                    self.batch_size,
-                    result,
-                    ar_mask,
-                    deterministic_synthesis,
-                    device=self.device,
-                )
-
-                errors = ((result != input).long() * ar_mask).reshape(
-                    -1, 1 + self.nb_digits
-                )
-                ar_mask = ar_mask.reshape(-1, 1 + self.nb_digits)
-
-                nb_total = ar_mask.max(1).values.sum()
-                nb_correct = nb_total - errors.max(1).values.sum()
-
-                return nb_total, nb_correct
-
-            test_nb_total, test_nb_correct = compute_nb_correct(self.test_input[:1000])
-
-            logger(
-                f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
-            )
-
-            ##############################################################
-            # Log a few generated sequences
-            input = self.test_input[:10, : 12 * (1 + self.nb_digits)]
+        def compute_nb_correct(input):
             result = input.clone()
             stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
             ar_mask = (result != input).long()
-
-            # for n in range(result.size(0)):
-            # logger(
-            # f"test_before {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
-            # )
-
             masked_inplace_autoregression(
                 model,
                 self.batch_size,
@@ -763,13 +822,48 @@ class Stack(Task):
                 device=self.device,
             )
 
-            for n in range(result.size(0)):
-                logger(
-                    f"test_after  {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
-                )
-            ##############################################################
+            errors = ((result != input).long() * ar_mask).reshape(
+                -1, 1 + self.nb_digits
+            )
+            ar_mask = ar_mask.reshape(-1, 1 + self.nb_digits)
+
+            nb_total = ar_mask.max(1).values.sum()
+            nb_correct = nb_total - errors.max(1).values.sum()
+
+            return nb_total, nb_correct
+
+        test_nb_total, test_nb_correct = compute_nb_correct(self.test_input[:1000])
 
-            model.train(t)
+        logger(
+            f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+        )
+
+        ##############################################################
+        # Log a few generated sequences
+        input = self.test_input[:10, : 12 * (1 + self.nb_digits)]
+        result = input.clone()
+        stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
+        ar_mask = (result != input).long()
+
+        # for n in range(result.size(0)):
+        # logger(
+        # f"test_before {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
+        # )
+
+        masked_inplace_autoregression(
+            model,
+            self.batch_size,
+            result,
+            ar_mask,
+            deterministic_synthesis,
+            device=self.device,
+        )
+
+        for n in range(result.size(0)):
+            logger(
+                f"test_after  {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
+            )
+        ##############################################################
 
 
 ######################################################################
@@ -799,9 +893,13 @@ class Expr(Task):
         nb_test_samples,
         nb_variables,
         sequence_length,
+        operand_max,
+        result_max,
         batch_size,
         device=torch.device("cpu"),
     ):
+        super().__init__()
+
         self.batch_size = batch_size
         self.device = device
 
@@ -809,13 +907,16 @@ class Expr(Task):
             nb_train_samples,
             nb_variables=nb_variables,
             length=sequence_length,
-            # length=2 * sequence_length,
-            # randomize_length=True,
+            operand_max=operand_max,
+            result_max=result_max,
         )
+
         test_sequences = expr.generate_sequences(
             nb_test_samples,
             nb_variables=nb_variables,
             length=sequence_length,
+            operand_max=operand_max,
+            result_max=result_max,
         )
 
         symbols = list(set("#" + "".join(train_sequences + test_sequences)))
@@ -841,9 +942,8 @@ class Expr(Task):
         for batch in tqdm.tqdm(
             input.split(self.batch_size), dynamic_ncols=True, desc=desc
         ):
-            if split == "train":
-                last = (batch != self.filler).max(0).values.nonzero().max() + 3
-                batch = batch[:, :last]
+            last = (batch != self.filler).max(0).values.nonzero().max() + 3
+            batch = batch[:, :last]
             yield batch
 
     def vocabulary_size(self):
@@ -861,38 +961,40 @@ class Expr(Task):
         deterministic_synthesis,
         input_file=None,
     ):
-        with torch.autograd.no_grad():
-            t = model.training
-            model.eval()
-
-            def compute_nb_correct(input):
-                result = input.clone()
-                ar_mask = (result == self.space).long().cumsum(dim=1).clamp(max=1)
-                result = (1 - ar_mask) * result + ar_mask * self.filler
-                masked_inplace_autoregression(
-                    model,
-                    self.batch_size,
-                    result,
-                    ar_mask,
-                    deterministic_synthesis,
-                    device=self.device,
-                )
+        def compute_nb_correct(input):
+            result = input.clone()
+            s = (result == self.space).long()
+            ar_mask = (s.cumsum(dim=1) - s).clamp(min=0, max=1)
+            result = (1 - ar_mask) * result + ar_mask * self.filler
+            masked_inplace_autoregression(
+                model,
+                self.batch_size,
+                result,
+                ar_mask,
+                deterministic_synthesis,
+                device=self.device,
+            )
+
+            nb_total = input.size(0)
+            nb_correct = (input == result).long().min(1).values.sum()
 
-                nb_total = input.size(0)
-                nb_correct = (input == result).long().min(1).values.sum()
+            #######################################################################
+            # Comput predicted vs. true variable values
 
-                #######################################################################
-                # Comput predicted vs. true variable values
+            nb_delta = torch.zeros(5, dtype=torch.int64)
+            nb_missed = 0
 
-                nb_delta = torch.zeros(5, dtype=torch.int64)
-                nb_missed = 0
+            values_input = expr.extract_results([self.seq2str(s) for s in input])
+            values_result = expr.extract_results([self.seq2str(s) for s in result])
 
-                values_input = expr.extract_results([self.seq2str(s) for s in input])
-                values_result = expr.extract_results([self.seq2str(s) for s in result])
+            filename = os.path.join(result_dir, f"expr_result_{n_epoch:04d}.txt")
 
+            with open(filename, "w") as f:
                 for i, r in zip(values_input, values_result):
                     for n, vi in i.items():
                         vr = r.get(n)
+                        f.write(f"{vi} {-1 if vr is None else vr}\n")
+
                         if vr is None or vr < 0:
                             nb_missed += 1
                         else:
@@ -902,64 +1004,188 @@ class Expr(Task):
                             else:
                                 nb_delta[d] += 1
 
-                ######################################################################
+            ######################################################################
 
-                return nb_total, nb_correct, nb_delta, nb_missed
+            return nb_total, nb_correct, nb_delta, nb_missed
 
-            (
-                test_nb_total,
-                test_nb_correct,
-                test_nb_delta,
-                test_nb_missed,
-            ) = compute_nb_correct(self.test_input[:1000])
+        (
+            test_nb_total,
+            test_nb_correct,
+            test_nb_delta,
+            test_nb_missed,
+        ) = compute_nb_correct(self.test_input[:10000])
 
-            logger(
-                f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
-            )
+        logger(
+            f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+        )
 
-            nb_total = test_nb_delta.sum() + test_nb_missed
-            for d in range(test_nb_delta.size(0)):
-                logger(
-                    f"error_value {n_epoch} delta {d} {test_nb_delta[d]} {test_nb_delta[d]*100/nb_total:.02f}%"
-                )
+        nb_total = test_nb_delta.sum() + test_nb_missed
+        for d in range(test_nb_delta.size(0)):
             logger(
-                f"error_value {n_epoch} missed {test_nb_missed} {test_nb_missed*100/nb_total:.02f}%"
+                f"error_value {n_epoch} delta {d} {test_nb_delta[d]} {test_nb_delta[d]*100/nb_total:.02f}%"
             )
+        logger(
+            f"error_value {n_epoch} missed {test_nb_missed} {test_nb_missed*100/nb_total:.02f}%"
+        )
 
-            ##############################################################
-            # Log a few generated sequences
-            if input_file is None:
-                input = self.test_input[:10]
-            else:
-                with open(input_file, "r") as f:
-                    sequences = [e.strip() for e in f.readlines()]
-                    sequences = [s + " " + "#" * 50 for s in sequences]
-                    input = self.tensorize(sequences)
+        ##############################################################
+        # Log a few generated sequences
+        if input_file is None:
+            input = self.test_input[:10]
+        else:
+            with open(input_file, "r") as f:
+                sequences = [e.strip() for e in f.readlines()]
+                sequences = [s + " " + "#" * 50 for s in sequences]
+                input = self.tensorize(sequences)
 
-            result = input.clone()
-            ar_mask = (result == self.space).long().cumsum(dim=1).clamp(max=1)
-            result = (1 - ar_mask) * result + ar_mask * self.filler
+        result = input.clone()
+        s = (result == self.space).long()
+        ar_mask = (s.cumsum(dim=1) - s).clamp(min=0, max=1)
+        result = (1 - ar_mask) * result + ar_mask * self.filler
 
-            # for n in range(result.size(0)):
-            logger(f"test_before {self.seq2str(result[n])}")
+        for n in range(result.size(0)):
+            logger(f"test_before {self.seq2str(result[n])}")
 
-            masked_inplace_autoregression(
-                model,
-                self.batch_size,
-                result,
-                ar_mask,
-                deterministic_synthesis,
-                device=self.device,
-            )
+        masked_inplace_autoregression(
+            model,
+            self.batch_size,
+            result,
+            ar_mask,
+            deterministic_synthesis,
+            device=self.device,
+        )
+
+        correct = (1 - ar_mask) * self.space + ar_mask * input
+        for n in range(result.size(0)):
+            comment = "GOOD" if (result[n] - input[n]).abs().max() == 0 else ""
+            logger(f"test_after  {self.seq2str(result[n])} {comment}")
+            logger(f"truth       {self.seq2str(correct[n])}")
+        ##############################################################
+
+
+######################################################################
+
+import world
+
+
+class World(Task):
+    def __init__(
+        self,
+        nb_train_samples,
+        nb_test_samples,
+        batch_size,
+        vqae_nb_epochs,
+        logger=None,
+        device=torch.device("cpu"),
+        device_storage=torch.device("cpu"),
+    ):
+        super().__init__()
+
+        self.batch_size = batch_size
+        self.device = device
+
+        (
+            train_frames,
+            train_action_seq,
+            test_frames,
+            test_action_seq,
+            self.frame2seq,
+            self.seq2frame,
+        ) = world.create_data_and_processors(
+            nb_train_samples,
+            nb_test_samples,
+            mode="first_last",
+            nb_steps=30,
+            nb_epochs=vqae_nb_epochs,
+            logger=logger,
+            device=device,
+            device_storage=device_storage,
+        )
 
-            correct = (1 - ar_mask) * self.space + ar_mask * input
-            for n in range(result.size(0)):
-                comment = "GOOD" if (result[n] - input[n]).abs().max() == 0 else ""
-                logger(f"test_after  {self.seq2str(result[n])} {comment}")
-                logger(f"correct     {self.seq2str(correct[n])}")
-            ##############################################################
+        print(f"{train_action_seq.size()=}")
 
-            model.train(t)
+        train_frame_seq = self.frame2seq(train_frames).to(device_storage)
+        test_frame_seq = self.frame2seq(test_frames).to(device_storage)
+
+        nb_frame_codes = max(train_frame_seq.max(), test_frame_seq.max()) + 1
+        nb_action_codes = max(train_action_seq.max(), test_action_seq.max()) + 1
+
+        self.len_frame_seq = train_frame_seq.size(1)
+        self.len_action_seq = train_action_seq.size(1)
+        self.nb_codes = nb_frame_codes + nb_action_codes
+
+        train_frame_seq = train_frame_seq.reshape(train_frame_seq.size(0) // 2, 2, -1)
+        print(f"{train_action_seq.device=} {nb_frame_codes.device=}")
+        train_action_seq += nb_frame_codes
+        self.train_input = torch.cat(
+            (train_frame_seq[:, 0, :], train_action_seq, train_frame_seq[:, 1, :]), 1
+        )
+
+        test_frame_seq = test_frame_seq.reshape(test_frame_seq.size(0) // 2, 2, -1)
+        test_action_seq += nb_frame_codes
+        self.test_input = torch.cat(
+            (test_frame_seq[:, 0, :], test_action_seq, test_frame_seq[:, 1, :]), 1
+        )
+
+    def batches(self, split="train", nb_to_use=-1, desc=None):
+        assert split in {"train", "test"}
+        input = self.train_input if split == "train" else self.test_input
+        if nb_to_use > 0:
+            input = input[:nb_to_use]
+        if desc is None:
+            desc = f"epoch-{split}"
+        for batch in tqdm.tqdm(
+            input.split(self.batch_size), dynamic_ncols=True, desc=desc
+        ):
+            yield batch.to(self.device)
+
+    def vocabulary_size(self):
+        return self.nb_codes
+
+    def produce_results(
+        self, n_epoch, model, result_dir, logger, deterministic_synthesis
+    ):
+        k = torch.arange(
+            2 * self.len_frame_seq + self.len_action_seq, device=self.device
+        )[None, :]
+
+        input = self.test_input[:64].to(self.device)
+        result = input.clone()
+
+        ar_mask = (
+            (k >= self.len_frame_seq + self.len_action_seq).long().expand_as(result)
+        )
+        result *= 1 - ar_mask
+
+        masked_inplace_autoregression(
+            model,
+            self.batch_size,
+            result,
+            ar_mask,
+            deterministic_synthesis,
+            device=self.device,
+        )
+
+        seq_start = input[:, : self.len_frame_seq]
+        seq_end = input[:, self.len_frame_seq + self.len_action_seq :]
+        seq_predicted = result[:, self.len_frame_seq + self.len_action_seq :]
+
+        result = torch.cat(
+            (seq_start[:, None, :], seq_end[:, None, :], seq_predicted[:, None, :]), 1
+        )
+        result = result.reshape(-1, result.size(-1))
+        print(f"{result.size()=}")
+
+        frames = self.seq2frame(result)
+        image_name = os.path.join(result_dir, f"world_result_{n_epoch:04d}.png")
+        torchvision.utils.save_image(
+            frames.float() / (world.Box.nb_rgb_levels - 1),
+            image_name,
+            nrow=12,
+            padding=1,
+            pad_value=0.0,
+        )
+        logger(f"wrote {image_name}")
 
 
 ######################################################################