Update.
[culture.git] / quizz_machine.py
index bf36d0b..6f7492d 100755 (executable)
@@ -12,6 +12,7 @@ import torch, torchvision
 from torch import nn
 from torch.nn import functional as F
 
+import mygpt
 from mygpt import BracketedSequence
 
 ######################################################################
@@ -20,7 +21,7 @@ from mygpt import BracketedSequence
 class Gang(nn.Module):
     def __init__(self, models, nb_models_for_generation, mode="groupthink"):
         super().__init__()
-        self.models = models
+        self.models = nn.ModuleList(models)
         self.nb_models_for_generation = nb_models_for_generation
         self.mode = mode
 
@@ -161,8 +162,8 @@ class QuizzMachine:
         nb_train_samples,
         nb_test_samples,
         batch_size,
-        result_dir=None,
-        logger=None,
+        result_dir,
+        logger,
         device=torch.device("cpu"),
     ):
         super().__init__()
@@ -170,6 +171,7 @@ class QuizzMachine:
         self.problem = problem
         self.batch_size = batch_size
         self.device = device
+        self.logger = logger
 
         self.train_w_quizzes = self.problem.generate_token_sequences(
             nb_train_samples
@@ -231,9 +233,9 @@ class QuizzMachine:
         return self.nb_codes
 
     def produce_results(
-        self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000
+        self, n_epoch, model, result_dir, deterministic_synthesis, nmax=1000
     ):
-        def compute_accuracy(input, logger=None):
+        def compute_accuracy(input):
             input = input[:nmax]
             ar_mask = self.make_ar_mask(input)
             result = input.clone() * (1 - ar_mask)
@@ -260,18 +262,18 @@ class QuizzMachine:
 
         train_nb_total, train_nb_correct = compute_accuracy(self.train_w_quizzes)
 
-        logger(
+        self.logger(
             f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
         )
 
-        test_nb_total, test_nb_correct = compute_accuracy(self.test_w_quizzes, logger)
+        test_nb_total, test_nb_correct = compute_accuracy(self.test_w_quizzes)
 
-        logger(
+        self.logger(
             f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
         )
 
         main_test_accuracy = test_nb_correct / test_nb_total
-        logger(f"main_test_accuracy {n_epoch} {main_test_accuracy}")
+        self.logger(f"main_test_accuracy {n_epoch} {main_test_accuracy}")
 
         ##############################
 
@@ -310,9 +312,7 @@ class QuizzMachine:
         else:
             self.test_c_quizzes.append(new_c_quizzes)
 
-    def comput_correctness(self, c_quizzes, models_for_validation):
-        # Create the reverse quizzes
-
+    def reverse_time(self, c_quizzes):
         token_forward, token_backward = self.problem.direction_tokens()
 
         l = (c_quizzes.size(1) - 1) // 2
@@ -320,9 +320,11 @@ class QuizzMachine:
         direction = self.problem.token_forward * (
             direction == self.problem.token_backward
         ) + self.problem.token_backward * (direction == self.problem.token_forward)
-        reverse_c_quizzes = torch.cat(
-            [c_quizzes[:, l + 1 :], direction, c_quizzes[:, :l]], dim=1
-        )
+
+        return torch.cat([c_quizzes[:, l + 1 :], direction, c_quizzes[:, :l]], dim=1)
+
+    def comput_correctness(self, c_quizzes, models_for_validation):
+        reversed_c_quizzes = self.reverse_time(c_quizzes)
 
         ar_mask = self.make_ar_mask(c_quizzes)
         seq_logproba = torch.empty(ar_mask.size(0), device=self.device)
@@ -348,12 +350,12 @@ class QuizzMachine:
 
             correct = (c_quizzes == result).long().min(dim=-1).values
 
-            reverse_result = reverse_c_quizzes.clone()
+            reversed_result = reversed_c_quizzes.clone()
 
             masked_inplace_autoregression(
                 model=model,
                 batch_size=self.batch_size,
-                input=reverse_result,
+                input=reversed_result,
                 ar_mask=ar_mask,
                 seq_logproba=seq_logproba,
                 temperature=1.0,
@@ -362,64 +364,82 @@ class QuizzMachine:
                 device=self.device,
             )
 
-            reverse_correct = (
-                (reverse_c_quizzes == reverse_result).long().min(dim=-1).values
+            reversed_correct = (
+                (reversed_c_quizzes == reversed_result).long().min(dim=-1).values
             )
 
-            nb_correct += correct * reverse_correct
+            nb_correct += correct * reversed_correct
 
         return nb_correct
 
     ###############################################################
 
-    def generate_quizzes(self, nb, model_for_generation, min_ave_seq_logproba):
+    def generate_quizzes(
+        self, nb, model_for_generation, min_ave_seq_logproba, reverse_cleanup=False
+    ):
         c_quizzes = torch.empty(
             nb, self.train_w_quizzes.size(1), device=self.device, dtype=torch.int64
         )
 
-        ar_mask = torch.full(c_quizzes.size(), 1, device=self.device)
-        seq_logproba = torch.empty(ar_mask.size(0), device=self.device)
+        ar_mask_prompt = torch.zeros(c_quizzes.size(), device=self.device)
+        ar_mask_prompt[:, : ar_mask_prompt.size(1) // 2 + 1] = 1
+        ar_mask_solve = 1 - ar_mask_prompt
+        seq_logproba = torch.empty(ar_mask_prompt.size(0), device=self.device)
+
+        if reverse_cleanup:
+            warnings.warn("very high temperature with reversed cleanup", RuntimeWarning)
+            temperature = 10.0
+        else:
+            temperature = 1.0
 
-        # bracketing of the temperature to get the target logproba
+        # warnings.warn("noise injection", RuntimeWarning)
+        # noise_std = torch.rand(1).item()
+        # self.logger(f"{noise_std=}")
 
-        temperature = 1
-        d_temperature = 1 / 3
+        # mygpt.set_noise_injection(model_for_generation, noise_std)
+
+        masked_inplace_autoregression(
+            model=model_for_generation,
+            batch_size=self.batch_size,
+            input=c_quizzes,
+            ar_mask=ar_mask_prompt,
+            seq_logproba=seq_logproba,
+            temperature=temperature,
+            deterministic_synthesis=False,
+            # progress_bar_desc="sampling c_quizzes",
+            device=self.device,
+        )
 
-        while True:
-            seq_logproba[...] = 0
+        # mygpt.set_noise_injection(model_for_generation, 0.0)
 
+        ave_seq_logproba = seq_logproba.mean()
+
+        masked_inplace_autoregression(
+            model=model_for_generation,
+            batch_size=self.batch_size,
+            input=c_quizzes,
+            ar_mask=ar_mask_solve,
+            seq_logproba=seq_logproba,
+            temperature=temperature,
+            deterministic_synthesis=True,
+            # progress_bar_desc="sampling c_quizzes",
+            device=self.device,
+        )
+
+        if reverse_cleanup:
+            c_quizzes = self.reverse_time(c_quizzes)
             masked_inplace_autoregression(
                 model=model_for_generation,
                 batch_size=self.batch_size,
                 input=c_quizzes,
-                ar_mask=ar_mask,
+                ar_mask=ar_mask_solve,
                 seq_logproba=seq_logproba,
                 temperature=temperature,
-                deterministic_synthesis=False,
+                deterministic_synthesis=True,
                 # progress_bar_desc="sampling c_quizzes",
                 device=self.device,
             )
 
-            ave_seq_logproba = seq_logproba.mean()
-
-            # If we do not have target logprobs, get out now
-            if min_ave_seq_logproba is None:
-                break
-
-            # Oh man that's ugly
-            if ave_seq_logproba < min_ave_seq_logproba:
-                if d_temperature > 0:
-                    d_temperature *= -1 / 3
-                temperature += d_temperature
-            elif ave_seq_logproba > min_ave_seq_logproba * 0.99:
-                if d_temperature < 0:
-                    d_temperature *= -1 / 3
-                temperature += d_temperature
-            else:
-                break
-
-            logger(f"changing temperature to {temperature}")
-
         return c_quizzes, seq_logproba.mean()
 
     ######################################################################
@@ -430,12 +450,15 @@ class QuizzMachine:
         model_for_generation,
         models_for_validation,
         min_ave_seq_logproba,
+        reverse_cleanup,
         n_epoch,
         result_dir,
-        logger,
     ):
         c_quizzes, ave_seq_logproba = self.generate_quizzes(
-            nb, model_for_generation, min_ave_seq_logproba
+            nb,
+            model_for_generation=model_for_generation,
+            min_ave_seq_logproba=min_ave_seq_logproba,
+            reverse_cleanup=reverse_cleanup,
         )
 
         nb_correct = self.comput_correctness(c_quizzes, models_for_validation)
@@ -451,18 +474,18 @@ class QuizzMachine:
         models,
         mode,
         min_ave_seq_logproba,
+        reverse_cleanup,
         n_epoch,
         result_dir,
-        logger,
     ):
         model_for_generation = Gang(models, nb_models_for_generation, mode)
         models_for_validation = models
         return self.create_c_quizzes(
-            nb,
-            model_for_generation,
-            models_for_validation,
-            min_ave_seq_logproba,
-            n_epoch,
-            result_dir,
-            logger,
+            nb=nb,
+            model_for_generation=model_for_generation,
+            models_for_validation=models_for_validation,
+            min_ave_seq_logproba=min_ave_seq_logproba,
+            reverse_cleanup=reverse_cleanup,
+            n_epoch=n_epoch,
+            result_dir=result_dir,
         )