Update.
[culture.git] / quizz_machine.py
index 8dc23a5..62ae8ce 100755 (executable)
@@ -29,8 +29,6 @@ def one_batch_masked_inplace_autoregression(
     seq_logproba,
     temperature=1.0,
     deterministic_synthesis=False,
-    forbidden_tokens=None,
-    forced_biases=None,
 ):
     to_generate = (ar_mask.sum(0) > 0).nonzero()
 
@@ -45,12 +43,6 @@ def one_batch_masked_inplace_autoregression(
 
         logits = (logits / temperature).log_softmax(dim=-1)
 
-        if forbidden_tokens is not None:
-            logits = logits.masked_fill(forbidden_tokens, float("-inf"))
-
-        if forced_biases is not None:
-            logits = logits + forced_biases[None, :]
-
         if deterministic_synthesis:
             t_next = logits.argmax(-1)
         else:
@@ -104,8 +96,6 @@ def masked_inplace_autoregression(
                 seq_logproba=seq_logproba,
                 temperature=temperature,
                 deterministic_synthesis=deterministic_synthesis,
-                forbidden_tokens=forbidden_tokens,
-                forced_biases=logit_biases,
             )
 
         model.train(t)
@@ -115,15 +105,105 @@ def masked_inplace_autoregression(
 
 
 class QuizzMachine:
-    def make_ar_mask(self, input):
-        b = torch.arange(input.size(1), device=input.device) > input.size(1) // 2
-        return b.long()[None, :].expand_as(input)
+    def indices_forward_and_backward(self, quizzes):
+        i_forward = quizzes[:, 0] == self.token_forward
+        j_forward = quizzes[:, 1 + self.prompt_len] == self.token_forward
+        i_backward = quizzes[:, 0] == self.token_backward
+        j_backward = quizzes[:, 1 + self.answer_len] == self.token_backward
+        assert torch.logical_or(
+            torch.logical_and(i_forward, j_forward),
+            torch.logical_and(i_backward, j_backward),
+        ).all()
+        return i_forward, i_backward
+
+    def reverse_time(self, quizzes):
+        i_forward, i_backward = self.indices_forward_and_backward(quizzes)
+
+        forward_to_backward = torch.cat(
+            [
+                quizzes[:, 0:1],
+                quizzes[:, 2 + self.prompt_len : 2 + self.prompt_len + self.answer_len],
+                quizzes[:, 1 + self.prompt_len : 1 + self.prompt_len + 1],
+                quizzes[:, 1 : 1 + self.prompt_len],
+            ],
+            dim=1,
+        )
+
+        forward_to_backward[:, 0] = self.token_backward
+        forward_to_backward[:, 1 + self.answer_len] = self.token_backward
+
+        backward_to_forward = torch.cat(
+            [
+                quizzes[:, 0:1],
+                quizzes[:, 2 + self.answer_len :],
+                quizzes[:, 1 + self.answer_len : 2 + self.answer_len],
+                quizzes[:, 1 : 1 + self.answer_len],
+            ],
+            dim=1,
+        )
+
+        backward_to_forward[:, 0] = self.token_forward
+        backward_to_forward[:, 1 + self.prompt_len] = self.token_forward
+
+        m = i_forward.long()[:, None]
+
+        return m * forward_to_backward + (1 - m) * backward_to_forward
+
+    def make_ar_mask(self, quizzes, first=False):
+        i_forward, i_backward = self.indices_forward_and_backward(quizzes)
+
+        t = torch.arange(quizzes.size(1), device=quizzes.device)
+
+        if first:
+            m_forward = (t >= 1).long() * (t < 1 + self.prompt_len).long()
+            m_backward = (t >= 1).long() * (t < 1 + self.answer_len).long()
+        else:
+            m_forward = (t >= 2 + self.prompt_len).long()
+            m_backward = (t >= 2 + self.answer_len).long()
+
+        m = i_forward.long()[:, None]
+
+        return m * m_forward + (1 - m) * m_backward
+
+    def generate_token_sequences(self, nb):
+        prompts, answers = self.problem.generate_prompts_and_answers(nb)
+
+        if self.prompt_len is None:
+            self.prompt_len = prompts.size(1)
+
+        if self.answer_len is None:
+            self.answer_len = answers.size(1)
+
+        assert prompts.size(1) == self.prompt_len and answers.size(1) == self.answer_len
+
+        result = []
+
+        for prompt, answer in zip(prompts, answers):
+            if torch.rand(1) < 0.5:
+                a = [
+                    torch.tensor([self.token_forward]),
+                    prompt,
+                    torch.tensor([self.token_forward]),
+                    answer,
+                ]
+            else:
+                a = [
+                    torch.tensor([self.token_backward]),
+                    answer,
+                    torch.tensor([self.token_backward]),
+                    prompt,
+                ]
+
+            result.append(torch.cat(a, dim=0)[None, :])
+
+        return torch.cat(result, dim=0)
 
     def __init__(
         self,
         problem,
         nb_train_samples,
         nb_test_samples,
+        back_accuracy,
         batch_size,
         result_dir,
         logger,
@@ -131,28 +211,60 @@ class QuizzMachine:
     ):
         super().__init__()
 
+        v = problem.nb_token_values()
+        self.token_forward = v
+        self.token_backward = v + 1
+        self.nb_token_values = v + 2
+
         self.problem = problem
+        self.back_accuracy = back_accuracy
         self.batch_size = batch_size
         self.device = device
         self.logger = logger
+        self.prompt_len = None
+        self.answer_len = None
 
-        self.train_w_quizzes = self.problem.generate_token_sequences(
-            nb_train_samples
-        ).to(device)
-        self.test_w_quizzes = self.problem.generate_token_sequences(nb_test_samples).to(
+        self.train_w_quizzes = self.generate_token_sequences(nb_train_samples).to(
             device
         )
 
-        self.nb_codes = max(self.train_w_quizzes.max(), self.test_w_quizzes.max()) + 1
+        self.test_w_quizzes = self.generate_token_sequences(nb_test_samples).to(device)
 
         self.train_c_quizzes = []
         self.test_c_quizzes = []
 
         if result_dir is not None:
-            self.problem.save_quizzes(
-                self.train_w_quizzes[:72], result_dir, "culture_w_quizzes"
+            self.save_quizzes(
+                result_dir,
+                "culture_w_quizzes",
+                self.train_w_quizzes[:72],
+                prediction=True,
             )
 
+    def save_quizzes(self, result_dir, filename_prefix, quizzes, prediction=False):
+        quizzes = quizzes.clone()
+        forward = quizzes[quizzes[:, 0] == self.token_forward]
+        ib = quizzes[:, 0] == self.token_backward
+        backward = quizzes[ib]
+        assert forward.size(0) + backward.size(0) == quizzes.size(0)
+        quizzes[ib] = self.reverse_time(quizzes[ib])
+
+        if prediction:
+            predicted_prompts = ib
+            predicted_answers = torch.logical_not(ib)
+        else:
+            predicted_prompts = None
+            predicted_answers = None
+
+        self.problem.save_quizzes(
+            result_dir,
+            filename_prefix,
+            quizzes[:, 1 : 1 + self.prompt_len],
+            quizzes[:, 2 + self.prompt_len :],
+            predicted_prompts,
+            predicted_answers,
+        )
+
     def batches(self, split="train", desc=None):
         assert split in {"train", "test"}
         if split == "train":
@@ -193,13 +305,12 @@ class QuizzMachine:
             yield batch
 
     def vocabulary_size(self):
-        return self.nb_codes
+        return self.nb_token_values
 
     def produce_results(
         self, n_epoch, model, result_dir, deterministic_synthesis, nmax=1000
     ):
         def compute_accuracy(input):
-            input = input[:nmax]
             ar_mask = self.make_ar_mask(input)
             result = input.clone() * (1 - ar_mask)
             seq_logproba = torch.empty(input.size(0), device=self.device)
@@ -216,20 +327,61 @@ class QuizzMachine:
                 device=self.device,
             )
 
-            nb_total, nb_correct = (
-                input.size(0),
-                (input == result).long().min(dim=1).values.sum(),
-            )
+            if self.back_accuracy:
+                # If back_accuracy is True, we compute the accuracy on
+                # the backward quizzes not by counting how many time
+                # the real prompt A is equal to the reconstructed
+                # prompt A*, but how many time the answers B* computed
+                # from A* is equal to the correct answer. So we look
+                # for the accuracy of A->B*=B for the forward, but for
+                # the backward we look at B->A*->B*=B instead of B->A*=A
+
+                n_forward = input[:, 0] == self.token_forward
+                nb_total = input[n_forward].size(0)
+                nb_correct = (
+                    (input[n_forward] == result[n_forward])
+                    .long()
+                    .min(dim=1)
+                    .values.sum()
+                    .item()
+                )
+
+                n_backward = input[:, 0] == self.token_backward
+                back_input = self.reverse_time(result[n_backward])
+
+                if back_input.size(0) > 0:
+                    back_input[:, 2 + self.prompt_len :] = input[
+                        n_backward, 1 : 1 + self.answer_len
+                    ]
+                    back_nb_total, back_nb_correct = compute_accuracy(back_input)
+
+                    self.logger(
+                        f"accuracy {n_epoch=} {model.id=} {nb_correct} / {nb_total}"
+                    )
+                    self.logger(
+                        f"back_accuracy {n_epoch=} {model.id=} {back_nb_correct} / {back_nb_total}"
+                    )
+
+                    nb_total += back_nb_total
+                    nb_correct += back_nb_correct
+                else:
+                    self.logger(
+                        f"accuracy {n_epoch=} {model.id=} {nb_correct} / {nb_total}"
+                    )
+
+            else:
+                nb_total = input.size(0)
+                nb_correct = (input == result).long().min(dim=1).values.sum()
 
             return nb_total, nb_correct
 
-        train_nb_total, train_nb_correct = compute_accuracy(self.train_w_quizzes)
+        train_nb_total, train_nb_correct = compute_accuracy(self.train_w_quizzes[:nmax])
 
         self.logger(
             f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
         )
 
-        test_nb_total, test_nb_correct = compute_accuracy(self.test_w_quizzes)
+        test_nb_total, test_nb_correct = compute_accuracy(self.test_w_quizzes[:nmax])
 
         self.logger(
             f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
@@ -257,8 +409,11 @@ class QuizzMachine:
             device=self.device,
         )
 
-        self.problem.save_quizzes(
-            result[:72], result_dir, f"culture_prediction_{n_epoch:04d}_{model.id:02d}"
+        self.save_quizzes(
+            result_dir,
+            f"culture_prediction_{n_epoch:04d}_{model.id:02d}",
+            quizzes=result[:72],
+            prediction=True,
         )
 
         return main_test_accuracy
@@ -267,7 +422,7 @@ class QuizzMachine:
         input = self.train_w_quizzes if for_train else self.test_w_quizzes
         nb = min(nb, input.size(0))
         input[:-nb] = input[nb:].clone()
-        input[-nb:] = self.problem.generate_token_sequences(nb).to(self.device)
+        input[-nb:] = self.generate_token_sequences(nb).to(self.device)
 
     def store_c_quizzes(self, new_c_quizzes, for_train=True):
         if for_train:
@@ -275,127 +430,126 @@ class QuizzMachine:
         else:
             self.test_c_quizzes.append(new_c_quizzes)
 
-    def reverse_time(self, c_quizzes):
-        token_forward, token_backward = self.problem.direction_tokens()
-
-        l = (c_quizzes.size(1) - 1) // 2
-        direction = c_quizzes[:, l : l + 1]
-        direction = self.problem.token_forward * (
-            direction == self.problem.token_backward
-        ) + self.problem.token_backward * (direction == self.problem.token_forward)
-
-        return torch.cat([c_quizzes[:, l + 1 :], direction, c_quizzes[:, :l]], dim=1)
-
-    def comput_correctness(self, c_quizzes, models_for_validation):
-        reversed_c_quizzes = self.reverse_time(c_quizzes)
-
-        ar_mask = self.make_ar_mask(c_quizzes)
-        seq_logproba = torch.empty(ar_mask.size(0), device=self.device)
+    def compute_correctness(
+        self,
+        c_quizzes,
+        models_for_validation,
+        bidirectional_validation=False,
+        deterministic_validation=True,
+    ):
+        if bidirectional_validation:
+            backward_c_quizzes = self.forward_to_backward(c_quizzes)
 
-        # Check how many of models can solve the quizzes in both directions
+        seq_logproba = torch.zeros(
+            c_quizzes.size(0),
+            max([m.id for m in models_for_validation]) + 1,
+            device=self.device,
+        )
 
         nb_correct = 0
 
         for model in models_for_validation:
             result = c_quizzes.clone()
 
+            seq_logproba[...] = 0.0
+
+            ar_mask = self.make_ar_mask(result)
+
             masked_inplace_autoregression(
                 model=model,
                 batch_size=self.batch_size,
                 input=result,
                 ar_mask=ar_mask,
-                seq_logproba=seq_logproba,
+                seq_logproba=seq_logproba[:, model.id],
                 temperature=1.0,
-                deterministic_synthesis=True,
+                deterministic_synthesis=deterministic_validation,
                 # progress_bar_desc="solving c_quizzes",
                 device=self.device,
             )
 
             correct = (c_quizzes == result).long().min(dim=-1).values
 
-            reversed_result = reversed_c_quizzes.clone()
+            if bidirectional_validation:
+                backward_result = backward_c_quizzes.clone()
 
-            masked_inplace_autoregression(
-                model=model,
-                batch_size=self.batch_size,
-                input=reversed_result,
-                ar_mask=ar_mask,
-                seq_logproba=seq_logproba,
-                temperature=1.0,
-                deterministic_synthesis=True,
-                # progress_bar_desc="solving reversed c_quizzes",
-                device=self.device,
-            )
+                ar_mask = self.make_ar_mask(backward_result)
 
-            reversed_correct = (
-                (reversed_c_quizzes == reversed_result).long().min(dim=-1).values
-            )
+                masked_inplace_autoregression(
+                    model=model,
+                    batch_size=self.batch_size,
+                    input=backward_result,
+                    ar_mask=ar_mask,
+                    seq_logproba=seq_logproba[:, model.id],
+                    temperature=1.0,
+                    deterministic_synthesis=deterministic_validation,
+                    # progress_bar_desc="solving backward c_quizzes",
+                    device=self.device,
+                )
+
+                backward_correct = (
+                    (backward_c_quizzes == backward_result).long().min(dim=-1).values
+                )
+
+                correct *= backward_correct
 
-            nb_correct += correct * reversed_correct
+            # endif
 
-        return nb_correct
+            nb_correct += correct
+
+        return nb_correct, seq_logproba
 
     ###############################################################
 
-    def generate_quizzes(self, nb, model_for_generation, reverse_cleanup=False):
+    def generate_quizzes(self, nb, model_for_generation, temperature=1.0):
         c_quizzes = torch.empty(
             nb, self.train_w_quizzes.size(1), device=self.device, dtype=torch.int64
         )
 
-        ar_mask_prompt = torch.zeros(c_quizzes.size(), device=self.device)
-        ar_mask_prompt[:, : ar_mask_prompt.size(1) // 2 + 1] = 1
-        ar_mask_solve = 1 - ar_mask_prompt
-        seq_logproba = torch.empty(ar_mask_prompt.size(0), device=self.device)
-
-        if reverse_cleanup:
-            warnings.warn("very high temperature with reversed cleanup", RuntimeWarning)
-            temperature = 10.0
-        else:
-            temperature = 1.0
+        seq_logproba = torch.zeros(nb, device=self.device)
 
-        # warnings.warn("noise injection", RuntimeWarning)
-        # noise_std = torch.rand(1).item()
-        # self.logger(f"{noise_std=}")
+        # First, we generate the answer at high temperature
 
-        # mygpt.set_noise_injection(model_for_generation, noise_std)
+        c_quizzes[:, 0] = self.token_backward
+        c_quizzes[:, 1 + self.answer_len] = self.token_backward
 
         masked_inplace_autoregression(
             model=model_for_generation,
             batch_size=self.batch_size,
             input=c_quizzes,
-            ar_mask=ar_mask_prompt,
+            ar_mask=self.make_ar_mask(c_quizzes, first=True),
             seq_logproba=seq_logproba,
             temperature=temperature,
             deterministic_synthesis=False,
             device=self.device,
         )
 
-        # mygpt.set_noise_injection(model_for_generation, 0.0)
-
-        ave_seq_logproba = seq_logproba.mean()
+        # Then, we generate the prompt at low temperature
 
         masked_inplace_autoregression(
             model=model_for_generation,
             batch_size=self.batch_size,
             input=c_quizzes,
-            ar_mask=ar_mask_solve,
+            ar_mask=self.make_ar_mask(c_quizzes),
             seq_logproba=seq_logproba,
-            temperature=temperature,
-            deterministic_synthesis=True,
+            temperature=1 / temperature,
+            deterministic_synthesis=False,
             device=self.device,
         )
 
-        if reverse_cleanup:
-            c_quizzes = self.reverse_time(c_quizzes)
-            masked_inplace_autoregression(
-                model=model_for_generation,
-                batch_size=self.batch_size,
-                input=c_quizzes,
-                ar_mask=ar_mask_solve,
-                seq_logproba=seq_logproba,
-                temperature=temperature,
-                deterministic_synthesis=True,
-                device=self.device,
-            )
+        # Then we return the quizz, and re-generate the response, now
+        # at low temperature
+
+        c_quizzes = self.reverse_time(c_quizzes)
+
+        masked_inplace_autoregression(
+            model=model_for_generation,
+            batch_size=self.batch_size,
+            input=c_quizzes,
+            ar_mask=self.make_ar_mask(c_quizzes),
+            seq_logproba=seq_logproba,
+            temperature=1 / temperature,
+            deterministic_synthesis=False,
+            device=self.device,
+        )
 
-        return c_quizzes, seq_logproba.mean()
+        return c_quizzes