Update.
[culture.git] / quizz_machine.py
index daa8a54..5f19998 100755 (executable)
@@ -12,10 +12,56 @@ import torch, torchvision
 from torch import nn
 from torch.nn import functional as F
 
+import mygpt
 from mygpt import BracketedSequence
 
 ######################################################################
 
+# ar_mask is a tensor with 0s and 1s, of same shape as input, with
+# 1s where tokens should be generated. The others are kept
+# unchanged.
+
+
+def one_batch_masked_inplace_autoregression(
+    model,
+    input,
+    ar_mask,
+    seq_logproba,
+    temperature=1.0,
+    deterministic_synthesis=False,
+    forbidden_tokens=None,
+    forced_biases=None,
+):
+    to_generate = (ar_mask.sum(0) > 0).nonzero()
+
+    if to_generate.min() > 0:
+        model(
+            BracketedSequence(input, 0, to_generate.min())
+        )  # Needed to initialize the model's cache
+    for s in range(to_generate.min(), to_generate.max() + 1):
+        output = model(BracketedSequence(input, s, 1)).x
+
+        logits = output[:, s]
+
+        logits = (logits / temperature).log_softmax(dim=-1)
+
+        if forbidden_tokens is not None:
+            logits = logits.masked_fill(forbidden_tokens, float("-inf"))
+
+        if forced_biases is not None:
+            logits = logits + forced_biases[None, :]
+
+        if deterministic_synthesis:
+            t_next = logits.argmax(-1)
+        else:
+            dist = torch.distributions.categorical.Categorical(logits=logits)
+            t_next = dist.sample()
+
+        all_n = torch.arange(t_next.size(0))
+        seq_logproba += logits[all_n, t_next].sum(dim=-1)
+
+        input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
+
 
 def masked_inplace_autoregression(
     model,
@@ -27,7 +73,7 @@ def masked_inplace_autoregression(
     deterministic_synthesis,
     forbidden_tokens=None,
     logit_biases=None,
-    progress_bar_desc="autoregression",
+    progress_bar_desc=None,
     device=torch.device("cpu"),
 ):
     assert input.size() == ar_mask.size()
@@ -51,7 +97,8 @@ def masked_inplace_autoregression(
         model.eval()
 
         for input, ar_mask, seq_logproba in batches:
-            model.masked_inplace_autoregression(
+            one_batch_masked_inplace_autoregression(
+                model=model,
                 input=input,
                 ar_mask=ar_mask,
                 seq_logproba=seq_logproba,
@@ -67,72 +114,88 @@ def masked_inplace_autoregression(
 ######################################################################
 
 
-class Task:
-    def batches(self, split="train", nb_to_use=-1, desc=None):
-        pass
-
-    def vocabulary_size(self):
-        pass
-
-    def produce_results(
-        self, n_epoch, model, result_dir, logger, deterministic_synthesis
-    ):
-        pass
-
-
-######################################################################
+class QuizzMachine:
+    def make_ar_mask(self, input):
+        b = torch.arange(input.size(1), device=input.device) > input.size(1) // 2
+        return b.long()[None, :].expand_as(input)
 
-import sky
+    def generate_token_sequences(self, nb):
+        prompts, answers = self.problem.generate_prompts_and_answers(nb)
+        result = []
 
+        for prompt, answer in zip(prompts, answers):
+            if torch.rand(1) < 0.5:
+                a = [torch.tensor([self.token_forward]), prompt, answer]
+            else:
+                a = [torch.tensor([self.token_backward]), answer, prompt]
 
-class QuizzMachine(Task):
-    def save_image(self, input, result_dir, filename, logger):
-        img = sky.seq2img(input.to("cpu"), self.height, self.width)
-        image_name = os.path.join(result_dir, filename)
-        torchvision.utils.save_image(img.float() / 255.0, image_name, nrow=6, padding=4)
-        logger(f"wrote {image_name}")
+            result.append(torch.cat(a, dim=0)[None, :])
 
-    def save_quizzes(self, input, result_dir, filename_prefix, logger):
-        self.save_image(input, result_dir, filename_prefix + ".png", logger)
-
-    def make_ar_mask(self, input):
-        b = torch.arange(input.size(1), device=input.device) > input.size(1) // 2
-        return b.long()[None, :].expand_as(input)
+        return torch.cat(result, dim=0)
 
     def __init__(
         self,
+        problem,
         nb_train_samples,
         nb_test_samples,
         batch_size,
-        result_dir=None,
-        logger=None,
+        result_dir,
+        logger,
         device=torch.device("cpu"),
     ):
         super().__init__()
 
+        v = problem.nb_token_values()
+        self.token_forward = v
+        self.token_backward = v + 1
+        self.nb_token_values = v + 2
+
+        self.problem = problem
         self.batch_size = batch_size
         self.device = device
-        self.height = 6
-        self.width = 8
-
-        self.train_w_quizzes = sky.generate_seq(
-            nb_train_samples, height=self.height, width=self.width
-        ).to(device)
+        self.logger = logger
 
-        self.test_w_quizzes = sky.generate_seq(
-            nb_test_samples, height=self.height, width=self.width
-        ).to(device)
+        self.train_w_quizzes = self.generate_token_sequences(nb_train_samples).to(
+            device
+        )
 
-        self.nb_codes = max(self.train_w_quizzes.max(), self.test_w_quizzes.max()) + 1
+        self.test_w_quizzes = self.generate_token_sequences(nb_test_samples).to(device)
 
         self.train_c_quizzes = []
         self.test_c_quizzes = []
 
         if result_dir is not None:
             self.save_quizzes(
-                self.train_w_quizzes[:72], result_dir, f"culture_w_quizzes", logger
+                result_dir, "culture_w_quizzes", self.train_w_quizzes[:72]
             )
 
+    def save_quizzes(self, result_dir, filename_prefix, quizzes, prediction=False):
+        print(f"DEBUG {quizzes.size()=}")
+        l = (quizzes.size(1) - 1) // 2
+        forward = (quizzes[:, 0] == self.token_forward).long()
+        backward = (quizzes[:, 0] == self.token_backward).long()
+        assert forward.equal(1 - backward)
+        first = quizzes[:, 1 : 1 + l]
+        second = quizzes[:, 1 + l : 1 + 2 * l]
+        prompts = forward[:, None] * first + backward[:, None] * second
+        answers = forward[:, None] * second + backward[:, None] * first
+
+        if prediction:
+            predicted_prompts = backward
+            predicted_answers = forward
+        else:
+            predicted_prompts = None
+            predicted_answers = None
+
+        self.problem.save_quizzes(
+            result_dir,
+            filename_prefix,
+            prompts,
+            answers,
+            predicted_prompts,
+            predicted_answers,
+        )
+
     def batches(self, split="train", desc=None):
         assert split in {"train", "test"}
         if split == "train":
@@ -145,7 +208,7 @@ class QuizzMachine(Task):
         if len(c_quizzes) > 0:
             c_quizzes = torch.cat(c_quizzes, dim=0)
             if c_quizzes.size(0) > w_quizzes.size(0) // 2:
-                i = torch.randperm(w_quizzes.size(0))[: w_quizzes.size(0) // 2]
+                i = torch.randperm(c_quizzes.size(0))[: w_quizzes.size(0) // 2]
                 c_quizzes = c_quizzes[i]
 
             i = torch.randperm(w_quizzes.size(0))[
@@ -173,12 +236,12 @@ class QuizzMachine(Task):
             yield batch
 
     def vocabulary_size(self):
-        return self.nb_codes
+        return self.nb_token_values
 
     def produce_results(
-        self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000
+        self, n_epoch, model, result_dir, deterministic_synthesis, nmax=1000
     ):
-        def compute_accuracy(input, logger=None):
+        def compute_accuracy(input):
             input = input[:nmax]
             ar_mask = self.make_ar_mask(input)
             result = input.clone() * (1 - ar_mask)
@@ -205,18 +268,18 @@ class QuizzMachine(Task):
 
         train_nb_total, train_nb_correct = compute_accuracy(self.train_w_quizzes)
 
-        logger(
+        self.logger(
             f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
         )
 
-        test_nb_total, test_nb_correct = compute_accuracy(self.test_w_quizzes, logger)
+        test_nb_total, test_nb_correct = compute_accuracy(self.test_w_quizzes)
 
-        logger(
+        self.logger(
             f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
         )
 
         main_test_accuracy = test_nb_correct / test_nb_total
-        logger(f"main_test_accuracy {n_epoch} {main_test_accuracy}")
+        self.logger(f"main_test_accuracy {n_epoch} {main_test_accuracy}")
 
         ##############################
 
@@ -238,10 +301,10 @@ class QuizzMachine(Task):
         )
 
         self.save_quizzes(
-            result[:72],
             result_dir,
             f"culture_prediction_{n_epoch:04d}_{model.id:02d}",
-            logger,
+            quizzes=result[:72],
+            prediction=True,
         )
 
         return main_test_accuracy
@@ -250,9 +313,7 @@ class QuizzMachine(Task):
         input = self.train_w_quizzes if for_train else self.test_w_quizzes
         nb = min(nb, input.size(0))
         input[:-nb] = input[nb:].clone()
-        input[-nb:] = sky.generate_seq(nb, height=self.height, width=self.width).to(
-            self.device
-        )
+        input[-nb:] = self.generate_token_sequences(nb).to(self.device)
 
     def store_c_quizzes(self, new_c_quizzes, for_train=True):
         if for_train:
@@ -260,123 +321,146 @@ class QuizzMachine(Task):
         else:
             self.test_c_quizzes.append(new_c_quizzes)
 
-    def create_c_quizzes(
-        self,
-        n_epoch,
-        result_dir,
-        logger,
-        nb,
-        model,
-        other_models,
-        min_ave_seq_logproba,
-    ):
-        ###############################################################
-        # Generate quizzes with model
+    def reverse_time(self, c_quizzes):
+        l = (c_quizzes.size(1) - 1) // 2
+        direction = c_quizzes[:, 0:1]
+        direction = self.token_forward * (
+            direction == self.token_backward
+        ) + self.token_backward * (direction == self.token_forward)
 
-        c_quizzes = torch.empty(
-            nb, self.height * self.width * 2 + 1, device=self.device, dtype=torch.int64
+        return torch.cat(
+            [direction, c_quizzes[:, l + 1 :], c_quizzes[:, 1 : l + 1]], dim=1
         )
 
-        ar_mask = torch.full(c_quizzes.size(), 1, device=self.device)
+    def compute_correctness(
+        self, c_quizzes, models_for_validation, both_directions=True
+    ):
+        reversed_c_quizzes = self.reverse_time(c_quizzes)
+
+        ar_mask = self.make_ar_mask(c_quizzes)
         seq_logproba = torch.empty(ar_mask.size(0), device=self.device)
 
-        temperature = 1
-        d_temperature = 1 / 3
+        # Check how many of models can solve the quizzes in both directions
 
-        while True:
-            seq_logproba[...] = 0
+        nb_correct = 0
+
+        for model in models_for_validation:
+            result = c_quizzes.clone()
 
             masked_inplace_autoregression(
                 model=model,
                 batch_size=self.batch_size,
-                input=c_quizzes,
+                input=result,
                 ar_mask=ar_mask,
                 seq_logproba=seq_logproba,
-                temperature=temperature,
-                deterministic_synthesis=False,
-                progress_bar_desc="sampling c_quizzes",
+                temperature=1.0,
+                deterministic_synthesis=True,
+                # progress_bar_desc="solving c_quizzes",
                 device=self.device,
             )
 
-            ave_seq_logproba = seq_logproba.mean()
+            correct = (c_quizzes == result).long().min(dim=-1).values
 
-            logger(f"{ave_seq_logproba=} {min_ave_seq_logproba=}")
+            if both_directions:
+                reversed_result = reversed_c_quizzes.clone()
 
-            if min_ave_seq_logproba is None:
-                break
+                masked_inplace_autoregression(
+                    model=model,
+                    batch_size=self.batch_size,
+                    input=reversed_result,
+                    ar_mask=ar_mask,
+                    seq_logproba=seq_logproba,
+                    temperature=1.0,
+                    deterministic_synthesis=True,
+                    # progress_bar_desc="solving reversed c_quizzes",
+                    device=self.device,
+                )
 
-            # Oh man that's ugly
-            if ave_seq_logproba < min_ave_seq_logproba * 1.1:
-                if d_temperature > 0:
-                    d_temperature *= -1 / 3
-                temperature += d_temperature
-            elif ave_seq_logproba > min_ave_seq_logproba:
-                if d_temperature < 0:
-                    d_temperature *= -1 / 3
-                temperature += d_temperature
-            else:
-                break
+                reversed_correct = (
+                    (reversed_c_quizzes == reversed_result).long().min(dim=-1).values
+                )
+
+                correct *= reversed_correct
 
-            logger(f"chaging temperature to {temperature}")
+            # endif
 
-        ###############################################################
-        # Create the reverse quizzes
+            nb_correct += correct
 
-        l = self.height * self.width
-        direction = c_quizzes[:, l : l + 1]
-        direction = sky.token_forward * (
-            direction == sky.token_backward
-        ) + sky.token_backward * (direction == sky.token_forward)
-        reverse_c_quizzes = torch.cat(
-            [c_quizzes[:, l + 1 :], direction, c_quizzes[:, :l]], dim=1
+        return nb_correct
+
+    ###############################################################
+
+    def generate_quizzes(self, nb, model_for_generation, reverse_cleanup=False):
+        c_quizzes = torch.empty(
+            nb, self.train_w_quizzes.size(1), device=self.device, dtype=torch.int64
         )
 
-        ar_mask = self.make_ar_mask(c_quizzes)
-        seq_logproba = torch.empty(ar_mask.size(0), device=self.device)
+        ar_mask_prompt = torch.zeros(c_quizzes.size(), device=self.device)
+        ar_mask_prompt[:, : ar_mask_prompt.size(1) // 2 + 1] = 1
+        ar_mask_solve = 1 - ar_mask_prompt
+        seq_logproba = torch.empty(ar_mask_prompt.size(0), device=self.device)
+
+        if reverse_cleanup:
+            warnings.warn("very high temperature with reversed cleanup", RuntimeWarning)
+            temperature = 10.0
+        else:
+            temperature = 1.0
 
-        ###############################################################
-        # Check how many of the other models can solve them in both
-        # directions
+        # warnings.warn("noise injection", RuntimeWarning)
+        # noise_std = torch.rand(1).item()
+        # self.logger(f"{noise_std=}")
 
-        nb_correct = []
+        # mygpt.set_noise_injection(model_for_generation, noise_std)
 
-        for m in other_models:
-            result = c_quizzes.clone()
+        masked_inplace_autoregression(
+            model=model_for_generation,
+            batch_size=self.batch_size,
+            input=c_quizzes,
+            ar_mask=ar_mask_prompt,
+            seq_logproba=seq_logproba,
+            temperature=temperature,
+            deterministic_synthesis=False,
+            device=self.device,
+        )
+
+        # mygpt.set_noise_injection(model_for_generation, 0.0)
 
+        ave_seq_logproba = seq_logproba.mean()
+
+        masked_inplace_autoregression(
+            model=model_for_generation,
+            batch_size=self.batch_size,
+            input=c_quizzes,
+            ar_mask=ar_mask_solve,
+            seq_logproba=seq_logproba,
+            temperature=temperature,
+            deterministic_synthesis=True,
+            device=self.device,
+        )
+
+        if reverse_cleanup:
+            c_quizzes = self.reverse_time(c_quizzes)
             masked_inplace_autoregression(
-                model=m,
+                model=model_for_generation,
                 batch_size=self.batch_size,
-                input=result,
-                ar_mask=ar_mask,
+                input=c_quizzes,
+                ar_mask=ar_mask_solve,
                 seq_logproba=seq_logproba,
-                temperature=1.0,
+                temperature=temperature,
                 deterministic_synthesis=True,
-                progress_bar_desc="solving c_quizzes",
                 device=self.device,
             )
 
-            correct = (c_quizzes == result).long().min(dim=-1).values
-
-            reverse_result = reverse_c_quizzes.clone()
-
+            c_quizzes = self.reverse_time(c_quizzes)
             masked_inplace_autoregression(
-                model=m,
+                model=model_for_generation,
                 batch_size=self.batch_size,
-                input=reverse_result,
-                ar_mask=ar_mask,
+                input=c_quizzes,
+                ar_mask=ar_mask_solve,
                 seq_logproba=seq_logproba,
-                temperature=1.0,
+                temperature=temperature,
                 deterministic_synthesis=True,
-                progress_bar_desc="solving reversed c_quizzes",
                 device=self.device,
             )
 
-            reverse_correct = (
-                (reverse_c_quizzes == reverse_result).long().min(dim=-1).values
-            )
-
-            nb_correct.append((correct * reverse_correct)[None, :])
-
-        nb_correct = torch.cat(nb_correct, dim=0).sum(dim=0)
-
-        return c_quizzes, nb_correct, seq_logproba.mean()
+        return c_quizzes, seq_logproba.mean()