Update.
[culture.git] / quizz_machine.py
index 239dc68..0d6d8f5 100755 (executable)
@@ -12,47 +12,11 @@ import torch, torchvision
 from torch import nn
 from torch.nn import functional as F
 
+import mygpt
 from mygpt import BracketedSequence
 
 ######################################################################
 
-
-class Gang(nn.Module):
-    def __init__(self, models, nb_models_for_generation, mode="groupthink"):
-        super().__init__()
-        self.models = models
-        self.nb_models_for_generation = nb_models_for_generation
-        self.mode = mode
-
-    def forward(self, bs):
-        # If first = 0, we are re-starting an auto-regressive process,
-        # that's the right moment to randomize who gonna do it
-        if bs.first == 0:
-            self.models_to_use = [
-                self.models[k]
-                for k in torch.randperm(len(self.models))[
-                    : self.nb_models_for_generation
-                ]
-            ]
-
-        all_the_logits = torch.cat(
-            [model(bs).x[None] for model in self.models_to_use], dim=0
-        )
-
-        if self.mode == "groupthink":
-            y = all_the_logits.mean(dim=0)
-        elif self.mode == "groupwork":
-            m = torch.rand(all_the_logits.size(), device=all_the_logits.device)
-            m = (m.sort(dim=0).indices == 0).long()
-            y = (y * m).sum(dim=0)
-        else:
-            raise ValueError(f"Invalid mode {self.mode}")
-
-        return BracketedSequence(y, bs.first, bs.nb)
-
-
-######################################################################
-
 # ar_mask is a tensor with 0s and 1s, of same shape as input, with
 # 1s where tokens should be generated. The others are kept
 # unchanged.
@@ -155,39 +119,83 @@ class QuizzMachine:
         b = torch.arange(input.size(1), device=input.device) > input.size(1) // 2
         return b.long()[None, :].expand_as(input)
 
+    def generate_token_sequences(self, nb):
+        prompts, answers = self.problem.generate_prompts_and_answers(nb)
+        result = []
+
+        for prompt, answer in zip(prompts, answers):
+            if torch.rand(1) < 0.5:
+                a = [torch.tensor([self.token_forward]), prompt, answer]
+            else:
+                a = [torch.tensor([self.token_backward]), answer, prompt]
+
+            result.append(torch.cat(a, dim=0)[None, :])
+
+        return torch.cat(result, dim=0)
+
     def __init__(
         self,
         problem,
         nb_train_samples,
         nb_test_samples,
         batch_size,
-        result_dir=None,
-        logger=None,
+        result_dir,
+        logger,
         device=torch.device("cpu"),
     ):
         super().__init__()
 
+        v = problem.nb_token_values()
+        self.token_forward = v
+        self.token_backward = v + 1
+        self.nb_token_values = v + 2
+
         self.problem = problem
         self.batch_size = batch_size
         self.device = device
+        self.logger = logger
 
-        self.train_w_quizzes = self.problem.generate_token_sequences(
-            nb_train_samples
-        ).to(device)
-        self.test_w_quizzes = self.problem.generate_token_sequences(nb_test_samples).to(
+        self.train_w_quizzes = self.generate_token_sequences(nb_train_samples).to(
             device
         )
 
-        self.nb_codes = max(self.train_w_quizzes.max(), self.test_w_quizzes.max()) + 1
+        self.test_w_quizzes = self.generate_token_sequences(nb_test_samples).to(device)
 
         self.train_c_quizzes = []
         self.test_c_quizzes = []
 
         if result_dir is not None:
-            self.problem.save_quizzes(
-                self.train_w_quizzes[:72], result_dir, "culture_w_quizzes"
+            self.save_quizzes(
+                result_dir, "culture_w_quizzes", self.train_w_quizzes[:72]
             )
 
+    def save_quizzes(self, result_dir, filename_prefix, quizzes, prediction=False):
+        print(f"DEBUG {quizzes.size()=}")
+        l = (quizzes.size(1) - 1) // 2
+        forward = (quizzes[:, 0] == self.token_forward).long()
+        backward = (quizzes[:, 0] == self.token_backward).long()
+        assert forward.equal(1 - backward)
+        first = quizzes[:, 1 : 1 + l]
+        second = quizzes[:, 1 + l : 1 + 2 * l]
+        prompts = forward[:, None] * first + backward[:, None] * second
+        answers = forward[:, None] * second + backward[:, None] * first
+
+        if prediction:
+            predicted_prompts = backward
+            predicted_answers = forward
+        else:
+            predicted_prompts = None
+            predicted_answers = None
+
+        self.problem.save_quizzes(
+            result_dir,
+            filename_prefix,
+            prompts,
+            answers,
+            predicted_prompts,
+            predicted_answers,
+        )
+
     def batches(self, split="train", desc=None):
         assert split in {"train", "test"}
         if split == "train":
@@ -228,12 +236,12 @@ class QuizzMachine:
             yield batch
 
     def vocabulary_size(self):
-        return self.nb_codes
+        return self.nb_token_values
 
     def produce_results(
-        self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000
+        self, n_epoch, model, result_dir, deterministic_synthesis, nmax=1000
     ):
-        def compute_accuracy(input, logger=None):
+        def compute_accuracy(input):
             input = input[:nmax]
             ar_mask = self.make_ar_mask(input)
             result = input.clone() * (1 - ar_mask)
@@ -260,18 +268,18 @@ class QuizzMachine:
 
         train_nb_total, train_nb_correct = compute_accuracy(self.train_w_quizzes)
 
-        logger(
+        self.logger(
             f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
         )
 
-        test_nb_total, test_nb_correct = compute_accuracy(self.test_w_quizzes, logger)
+        test_nb_total, test_nb_correct = compute_accuracy(self.test_w_quizzes)
 
-        logger(
+        self.logger(
             f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
         )
 
         main_test_accuracy = test_nb_correct / test_nb_total
-        logger(f"main_test_accuracy {n_epoch} {main_test_accuracy}")
+        self.logger(f"main_test_accuracy {n_epoch} {main_test_accuracy}")
 
         ##############################
 
@@ -292,8 +300,11 @@ class QuizzMachine:
             device=self.device,
         )
 
-        self.problem.save_quizzes(
-            result[:72], result_dir, f"culture_prediction_{n_epoch:04d}_{model.id:02d}"
+        self.save_quizzes(
+            result_dir,
+            f"culture_prediction_{n_epoch:04d}_{model.id:02d}",
+            quizzes=result[:72],
+            prediction=True,
         )
 
         return main_test_accuracy
@@ -302,7 +313,7 @@ class QuizzMachine:
         input = self.train_w_quizzes if for_train else self.test_w_quizzes
         nb = min(nb, input.size(0))
         input[:-nb] = input[nb:].clone()
-        input[-nb:] = self.problem.generate_token_sequences(nb).to(self.device)
+        input[-nb:] = self.generate_token_sequences(nb).to(self.device)
 
     def store_c_quizzes(self, new_c_quizzes, for_train=True):
         if for_train:
@@ -310,29 +321,28 @@ class QuizzMachine:
         else:
             self.test_c_quizzes.append(new_c_quizzes)
 
-    def comput_correctness(self, c_quizzes, models_for_validation):
-        ###############################################################
-        # Create the reverse quizzes
-
-        token_forward, token_backward = self.problem.direction_tokens()
-
+    def reverse_time(self, c_quizzes):
         l = (c_quizzes.size(1) - 1) // 2
-        direction = c_quizzes[:, l : l + 1]
-        direction = self.problem.token_forward * (
-            direction == self.problem.token_backward
-        ) + self.problem.token_backward * (direction == self.problem.token_forward)
-        reverse_c_quizzes = torch.cat(
-            [c_quizzes[:, l + 1 :], direction, c_quizzes[:, :l]], dim=1
+        direction = c_quizzes[:, 0:1]
+        direction = self.token_forward * (
+            direction == self.token_backward
+        ) + self.token_backward * (direction == self.token_forward)
+
+        return torch.cat(
+            [direction, c_quizzes[:, l + 1 :], c_quizzes[:, 1 : l + 1]], dim=1
         )
 
+    def compute_correctness(
+        self, c_quizzes, models_for_validation, both_directions=False
+    ):
+        reversed_c_quizzes = self.reverse_time(c_quizzes)
+
         ar_mask = self.make_ar_mask(c_quizzes)
         seq_logproba = torch.empty(ar_mask.size(0), device=self.device)
 
-        ###############################################################
-        # Check how many of the other models can solve them in both
-        # directions
+        # Check how many of models can solve the quizzes in both directions
 
-        nb_correct = []
+        nb_correct = 0
 
         for model in models_for_validation:
             result = c_quizzes.clone()
@@ -351,122 +361,94 @@ class QuizzMachine:
 
             correct = (c_quizzes == result).long().min(dim=-1).values
 
-            reverse_result = reverse_c_quizzes.clone()
+            if both_directions:
+                reversed_result = reversed_c_quizzes.clone()
 
-            masked_inplace_autoregression(
-                model=model,
-                batch_size=self.batch_size,
-                input=reverse_result,
-                ar_mask=ar_mask,
-                seq_logproba=seq_logproba,
-                temperature=1.0,
-                deterministic_synthesis=True,
-                # progress_bar_desc="solving reversed c_quizzes",
-                device=self.device,
-            )
+                masked_inplace_autoregression(
+                    model=model,
+                    batch_size=self.batch_size,
+                    input=reversed_result,
+                    ar_mask=ar_mask,
+                    seq_logproba=seq_logproba,
+                    temperature=1.0,
+                    deterministic_synthesis=True,
+                    # progress_bar_desc="solving reversed c_quizzes",
+                    device=self.device,
+                )
 
-            reverse_correct = (
-                (reverse_c_quizzes == reverse_result).long().min(dim=-1).values
-            )
+                reversed_correct = (
+                    (reversed_c_quizzes == reversed_result).long().min(dim=-1).values
+                )
+
+                correct *= reversed_correct
 
-            nb_correct.append((correct * reverse_correct)[None, :])
+            # endif
 
-        return torch.cat(nb_correct, dim=0).sum(dim=0)
+            nb_correct += correct
 
-    def generate_quizzes(self, nb, model_for_generation, min_ave_seq_logproba):
-        ###############################################################
-        # Generate quizzes with model
+        return nb_correct
 
+    ###############################################################
+
+    def generate_quizzes(self, nb, model_for_generation):
         c_quizzes = torch.empty(
             nb, self.train_w_quizzes.size(1), device=self.device, dtype=torch.int64
         )
 
-        ar_mask = torch.full(c_quizzes.size(), 1, device=self.device)
-        seq_logproba = torch.empty(ar_mask.size(0), device=self.device)
+        ar_mask_first = torch.zeros(c_quizzes.size(), device=self.device)
+        ar_mask_first[:, : ar_mask_first.size(1) // 2 + 1] = 1
+        ar_mask_second = 1 - ar_mask_first
+        ar_mask_first[:, 0] = 0
+        ar_mask_second[:, 0] = 0
 
-        # bracketing of the temperature to get the target logproba
+        seq_logproba = torch.empty(ar_mask_first.size(0), device=self.device)
 
-        temperature = 1
-        d_temperature = 1 / 3
+        temperature = 10.0
 
-        while True:
-            seq_logproba[...] = 0
+        # First, we generate the answer at high temperature
 
-            masked_inplace_autoregression(
-                model=model_for_generation,
-                batch_size=self.batch_size,
-                input=c_quizzes,
-                ar_mask=ar_mask,
-                seq_logproba=seq_logproba,
-                temperature=temperature,
-                deterministic_synthesis=False,
-                # progress_bar_desc="sampling c_quizzes",
-                device=self.device,
-            )
-
-            ave_seq_logproba = seq_logproba.mean()
-
-            # If we do not have target logprobs, get out now
-            if min_ave_seq_logproba is None:
-                break
-
-            # Oh man that's ugly
-            if ave_seq_logproba < min_ave_seq_logproba:
-                if d_temperature > 0:
-                    d_temperature *= -1 / 3
-                temperature += d_temperature
-            elif ave_seq_logproba > min_ave_seq_logproba * 0.99:
-                if d_temperature < 0:
-                    d_temperature *= -1 / 3
-                temperature += d_temperature
-            else:
-                break
+        c_quizzes[:, 0] = self.token_backward
 
-            logger(f"changing temperature to {temperature}")
+        masked_inplace_autoregression(
+            model=model_for_generation,
+            batch_size=self.batch_size,
+            input=c_quizzes,
+            ar_mask=ar_mask_first,
+            seq_logproba=seq_logproba,
+            temperature=temperature,
+            deterministic_synthesis=False,
+            device=self.device,
+        )
 
-        return c_quizzes, seq_logproba.mean()
+        ave_seq_logproba = seq_logproba.mean()
 
-    ######################################################################
+        # Then, we generate the prompt deterministically
 
-    def create_c_quizzes(
-        self,
-        nb,
-        model_for_generation,
-        models_for_validation,
-        min_ave_seq_logproba,
-        n_epoch,
-        result_dir,
-        logger,
-    ):
-        c_quizzes, ave_seq_logproba = self.generate_quizzes(
-            nb, model_for_generation, min_ave_seq_logproba
+        masked_inplace_autoregression(
+            model=model_for_generation,
+            batch_size=self.batch_size,
+            input=c_quizzes,
+            ar_mask=ar_mask_second,
+            seq_logproba=seq_logproba,
+            temperature=1.0,
+            deterministic_synthesis=True,
+            device=self.device,
         )
 
-        nb_correct = self.comput_correctness(c_quizzes, models_for_validation)
+        # Then we return the quizz, and re-generate the response, now
+        # deterministically
 
-        return c_quizzes, nb_correct, ave_seq_logproba
+        c_quizzes = self.reverse_time(c_quizzes)
 
-    ######################################################################
-
-    def gang_create_c_quizzes(
-        self,
-        nb,
-        nb_models_for_generation,
-        models,
-        mode,
-        min_ave_seq_logproba,
-        n_epoch,
-        result_dir,
-        logger,
-    ):
-        model_for_generation = Gang(models, nb_models_for_generation, mode)
-        models_for_validation = models
-        return self.create_c_quizzes(
-            nb,
-            model_for_generation,
-            models_for_validation,
-            min_ave_seq_logproba,
-            n_epoch,
-            result_dir,
-            logger,
+        masked_inplace_autoregression(
+            model=model_for_generation,
+            batch_size=self.batch_size,
+            input=c_quizzes,
+            ar_mask=ar_mask_second,
+            seq_logproba=seq_logproba,
+            temperature=temperature,
+            deterministic_synthesis=True,
+            device=self.device,
         )
+
+        return c_quizzes, seq_logproba.mean()