Update.
[mygptrnn.git] / mygpt.py
index 7cecc22..e3ff21f 100755 (executable)
--- a/mygpt.py
+++ b/mygpt.py
@@ -181,7 +181,7 @@ def nsum_shape(X, Y_init):
 class DumbRec(nn.Module):
     def __init__(
         self,
-        dim_in,
+        dim_model,
         dim_qk,
         dim_v,
         nb_heads,
@@ -199,11 +199,11 @@ class DumbRec(nn.Module):
 
         self.k_star = randw(nb_lines, dim_qk)
 
-        self.w_qw = randw(nb_heads, dim_qk, dim_in)
-        self.w_qr = randw(nb_heads, dim_qk, dim_in)
-        # self.w_k = randw(nb_heads, dim_qk, dim_in)
-        self.w_v = randw(nb_heads, dim_v, dim_in)
-        self.w_o = randw(dim_v * nb_heads, dim_in)
+        self.w_qw = randw(nb_heads, dim_qk, dim_model)
+        self.w_qr = randw(nb_heads, dim_qk, dim_model)
+        # self.w_k = randw(nb_heads, dim_qk, dim_model)
+        self.w_v = randw(nb_heads, dim_v, dim_model)
+        self.w_o = randw(dim_v * nb_heads, dim_model)
 
     def reset_inner_loss(self):
         self.acc_attention = 0
@@ -310,7 +310,7 @@ class DumbRec(nn.Module):
 class KVRec(nn.Module):
     def __init__(
         self,
-        dim_in,
+        dim_model,
         dim_qk,
         dim_v,
         nb_heads,
@@ -328,11 +328,11 @@ class KVRec(nn.Module):
 
         self.k_star = randw(nb_lines, dim_qk)
 
-        self.w_qw = randw(nb_heads, dim_qk, dim_in)
-        self.w_qr = randw(nb_heads, dim_qk, dim_in)
-        self.w_k = randw(nb_heads, dim_qk, dim_in)
-        self.w_v = randw(nb_heads, dim_v, dim_in)
-        self.w_o = randw(dim_v * nb_heads, dim_in)
+        self.w_qw = randw(nb_heads, dim_qk, dim_model)
+        self.w_qr = randw(nb_heads, dim_qk, dim_model)
+        self.w_k = randw(nb_heads, dim_qk, dim_model)
+        self.w_v = randw(nb_heads, dim_v, dim_model)
+        self.w_o = randw(dim_v * nb_heads, dim_model)
 
     def reset_inner_loss(self):
         self.acc_attention = 0
@@ -441,6 +441,11 @@ class KVRec(nn.Module):
 ##############################
 
 
+# Returns a tensor with an additional index at rank win_dim, that move
+# along the same dimension as dim, on a domain {0...win_size-1}, and
+# dim is restricted on a domain reduced by win_size-1 values.
+
+
 def moving_window(x, dim, win_dim, win_size):
     size, stride = x.size(), x.stride()
     size = size[:dim] + (size[dim] - win_size + 1,) + size[dim + 1 :]
@@ -452,11 +457,91 @@ def moving_window(x, dim, win_dim, win_size):
 
 ##############################
 
+# This is one order of magnitude more complicated than I expected
+
+
+def flash_back_time_src(N, H, t0, t1, CL, CH, proba, device):
+    # starting flash backs
+    fb_start = (torch.rand(N, CH, t1 - t0, device=device) <= proba).long()
+    fb_start[:, :, -CL:] = 0
+    fb_start[:, :, :CL] = 0
+
+    # Remove series longer than CL
+    fb_body = fb_start.clone()
+    fb_body[:, :, CL + 1 :] -= fb_start[:, :, : -(CL + 1)]
+    fb_body = fb_body.cumsum(dim=2)
+    fb_start = fb_start * (fb_body == 1)
+
+    # Set a origin source time (starting time of the chunck to copy
+    # here) We set it as the current time minus a multiple of CL to be
+    # consistent with the "rolling" caterpillar
+    t = torch.arange(fb_start.size(2), device=fb_start.device)[None, None, :]
+    src_time = fb_start * (
+        t
+        - CL
+        * (
+            1
+            + (
+                torch.rand(fb_start.size(), device=fb_start.device) * (t // CL - 1)
+            ).long()
+        )
+    )
+    src_time[:, :, CL:] -= src_time.clone()[:, :, :-CL]
+    src_time = src_time.cumsum(dim=2)
+
+    src_head = fb_start * torch.randint(H, fb_start.size(), device=fb_start.device)
+    src_head[:, :, CL:] -= src_head.clone()[:, :, :-CL]
+    src_head = src_head.cumsum(dim=2)
+
+    # combine
+    src_delta = fb_start.clone()
+    src_delta[:, :, CL:] -= fb_start[:, :, :-CL]
+    src_delta = src_delta.cumsum(dim=2)
+    src_delta[:, :, CL:] -= CL * fb_start[:, :, :-CL]
+    src_time += src_delta.cumsum(dim=2) - 1
+
+    return src_time, src_head
+
+
+def insert_flash_back(rec_V, V, rec_K, K, t0, t1, CL, proba):
+    N, H, CH = V.size(0), V.size(1), rec_V.size(1)
+
+    fbt, fbh = flash_back_time_src(N, H, t0, t1, CL, CH, proba, rec_V.device)
+
+    fbt_V = fbt[:, :, :, None].expand_as(rec_V[:, :, t0:t1])
+    fbh_V = fbh[:, :, :, None].expand_as(rec_V[:, :, t0:t1])
+    t = fbt_V.clamp(min=0)
+    n = torch.arange(V.size(0), device=V.device)[:, None, None, None].expand_as(
+        rec_V[:, :, t0:t1]
+    )
+    d = torch.arange(V.size(3), device=V.device)[None, None, None, :].expand_as(
+        rec_V[:, :, t0:t1]
+    )
+    q = V[:, :, t0:t1][n, fbh_V, t, d]
+    rec_V[:, :, t0:t1] = q * (fbt_V >= 0) + rec_V[:, :, t0:t1] * (fbt_V < 0)
+
+    fbt_K = fbt[:, :, :, None].expand_as(rec_K[:, :, t0:t1])
+    fbh_K = fbh[:, :, :, None].expand_as(rec_K[:, :, t0:t1])
+    t = fbt_K.clamp(min=0)
+    n = torch.arange(K.size(0), device=K.device)[:, None, None, None].expand_as(
+        rec_K[:, :, t0:t1]
+    )
+    d = torch.arange(K.size(3), device=K.device)[None, None, None, :].expand_as(
+        rec_K[:, :, t0:t1]
+    )
+    q = K[:, :, t0:t1][n, fbh_K, t, d]
+    rec_K[:, :, t0:t1] = q * (fbt_K >= 0) + rec_K[:, :, t0:t1] * (fbt_K < 0)
+
+    # print("SANITY", (fbt_K >=0).float().sum()/fbt_K.numel())
+
+
+######################################################################
+
 
 class Caterpillar(nn.Module):
     def __init__(
         self,
-        dim_in,
+        dim_model,
         dim_qk,
         dim_v,
         nb_heads,
@@ -476,17 +561,17 @@ class Caterpillar(nn.Module):
         self.caterpillar_height = caterpillar_height
         self.attention_dropout = attention_dropout
 
-        self.w_G = randw(nb_heads, caterpillar_height, dim_in)
+        self.w_G = randw(nb_heads, caterpillar_height, dim_model)
         self.b_G = nn.Parameter(
             torch.full(
                 (nb_heads, caterpillar_height), -math.log(caterpillar_height - 1)
             )
         )
 
-        self.w_K = randw(nb_heads, dim_qk, dim_in)
-        self.w_V = randw(nb_heads, dim_v, dim_in)
-        self.w_Q = randw(nb_heads, dim_qk, dim_in)
-        self.w_O = randw(dim_v * nb_heads, dim_in)
+        self.w_K = randw(nb_heads, dim_qk, dim_model)
+        self.w_V = randw(nb_heads, dim_v, dim_model)
+        self.w_Q = randw(nb_heads, dim_qk, dim_model)
+        self.w_O = randw(dim_v * nb_heads, dim_model)
 
         self.init_K_rec = randw(caterpillar_height, caterpillar_length, dim_qk)
         self.init_V_rec = randw(caterpillar_height, caterpillar_length, dim_v)
@@ -509,7 +594,7 @@ class Caterpillar(nn.Module):
         T = bs.x.size(1)
         DV = self.w_V.size(1)
         DK = self.w_K.size(1)
-        Dout = self.w_O.size(1)
+        DM = self.w_O.size(1)
         CH = self.caterpillar_height
         CL = self.caterpillar_length
 
@@ -517,6 +602,8 @@ class Caterpillar(nn.Module):
             t0 >= CL and (t1 - t0) % CL == 0
         ), f"bs.first should be greater than caterpillar_length, and bs.nb should be a multiple of caterpillar_length"
 
+        # We cache values to deal efficiently with auto-regression
+
         if bs.init_cache:
             self.rec_V = X.new_zeros(N, CH, T, DV)
             self.rec_K = X.new_zeros(N, CH, T, DK)
@@ -525,21 +612,24 @@ class Caterpillar(nn.Module):
             self.rec_V[:, :, t0 - CL : t0] = self.init_V_rec[None, :, :, :]
             self.rec_K[:, :, t0 - CL : t0] = self.init_K_rec[None, :, :, :]
 
-            self.cache_Y = X.new_zeros(N, T, Dout)
+            self.cache_Y = X.new_zeros(N, T, DM)
 
         ######################################################################
         # Compute the recurrent state
 
-        # This is the Gating sequence that modulates if they key and
-        # values should be stored in one of the CH pairs of the
-        # current stack. The CH gating values are independent, which
-        # means that the same thing could be stored up to CH times or
-        # not at all
+        # This is the Gating sequence that modulates the storing of
+        # the new key and value in the CH pairs of the current
+        # stack. The CH gating values are independent, which means
+        # that the current K/V could be stored in multiple pairs of the
+        # recurrent state, or not at all.
 
         G = (
             torch.einsum("ntc,hec->nhet", X, self.w_G) + self.b_G[None, :, :, None]
         ).sigmoid()
 
+        # That bas a bad idea
+        # G = F.dropout(G, self.attention_dropout, self.training)
+
         V = torch.einsum("ntc,hdc->nhtd", X, self.w_V)
         K = torch.einsum("ntc,hdc->nhtd", X, self.w_K)
 
@@ -552,10 +642,11 @@ class Caterpillar(nn.Module):
         init_rec_V = self.rec_V[:, :, t0 - CL : t0]
         init_rec_K = self.rec_K[:, :, t0 - CL : t0]
 
-        # Here there is a trick: The parallel scan operates with a
-        # period of L, so we split the sequence indexing in two axes,
-        # the second of size CL, and run the parallel scan using the
-        # other alone as the sequence index.
+        # Here there is a trick: Since the stack at time t is computed
+        # by updating that at time t-L, the parallel scan operates
+        # with a period of L. To do so we split the time indexing in
+        # two axes, the second of size CL, and run the parallel scan
+        # using the other as the sequence index.
 
         A = A.unflatten(2, (-1, CL))
         gated_V = gated_V.unflatten(2, (-1, CL))
@@ -569,6 +660,10 @@ class Caterpillar(nn.Module):
         self.rec_V[:, :, t0:t1] = next_V.flatten(2, 3)
         self.rec_K[:, :, t0:t1] = next_K.flatten(2, 3)
 
+        warnings.warn("flash back", RuntimeWarning)
+        if self.training:
+            insert_flash_back(self.rec_V, V, self.rec_K, K, t0, t1, CL, proba=1e-2 / CL)
+
         ######################################################################
         # compute the readout
 
@@ -622,7 +717,7 @@ class Caterpillar(nn.Module):
 class QKVAttention(nn.Module):
     def __init__(
         self,
-        dim_in,
+        dim_model,
         dim_qk,
         dim_v,
         nb_heads=1,
@@ -638,10 +733,10 @@ class QKVAttention(nn.Module):
         self.attention_dropout = attention_dropout
         self.record_attention = False
 
-        self.w_q = randw(nb_heads, dim_qk, dim_in)
-        self.w_k = randw(nb_heads, dim_qk, dim_in)
-        self.w_v = randw(nb_heads, dim_v, dim_in)
-        self.w_o = randw(dim_v * nb_heads, dim_in)
+        self.w_q = randw(nb_heads, dim_qk, dim_model)
+        self.w_k = randw(nb_heads, dim_qk, dim_model)
+        self.w_v = randw(nb_heads, dim_v, dim_model)
+        self.w_o = randw(dim_v * nb_heads, dim_model)
 
     def forward(self, bs):
         x_q = bs.x
@@ -745,7 +840,7 @@ class MyGPT(nn.Module):
         def attlayer():
             if attention_layer == "mha":
                 return QKVAttention(
-                    dim_in=dim_model,
+                    dim_model=dim_model,
                     dim_qk=dim_keys,
                     dim_v=dim_model // nb_heads,
                     nb_heads=nb_heads,
@@ -754,7 +849,7 @@ class MyGPT(nn.Module):
                 )
             elif attention_layer == "dumbrec":
                 return DumbRec(
-                    dim_in=dim_model,
+                    dim_model=dim_model,
                     dim_qk=dim_keys,
                     dim_v=dim_rec_v,
                     nb_heads=nb_heads,
@@ -763,7 +858,7 @@ class MyGPT(nn.Module):
                 )
             elif attention_layer == "kvrec":
                 return KVRec(
-                    dim_in=dim_model,
+                    dim_model=dim_model,
                     dim_qk=dim_keys,
                     dim_v=dim_rec_v,
                     nb_heads=nb_heads,
@@ -772,7 +867,7 @@ class MyGPT(nn.Module):
                 )
             elif attention_layer == "caterpillar":
                 return Caterpillar(
-                    dim_in=dim_model,
+                    dim_model=dim_model,
                     dim_qk=dim_keys,
                     dim_v=dim_rec_v,
                     nb_heads=nb_heads,
@@ -912,7 +1007,7 @@ if __name__ == "__main__":
     print("Basic check.")
 
     m = Caterpillar(
-        dim_in=4,
+        dim_model=4,
         dim_qk=3,
         dim_v=7,
         nb_heads=1,