Merge branch 'dev'
[culture.git] / mygpt.py
index 3bb3519..041d28c 100755 (executable)
--- a/mygpt.py
+++ b/mygpt.py
@@ -19,6 +19,45 @@ from torch.nn import functional as F
 
 ######################################################################
 
+
+class BSQ(nn.Module):
+    def __init__(self, L):
+        super().__init__()
+        self.L = L
+
+    def forward(self, input, indexes=False):
+        norm = input.pow(2).sum(dim=2, keepdim=True).sqrt()
+        u = input / norm
+
+        if indexes:
+            return ((u >= 0).long() * (2 ** torch.arange(self.L))[None, :]).sum(dim=1)
+
+        hat_u = 1 / math.sqrt(self.L) * (2 * (u >= 0).float() - 1)
+        if self.training:
+            self.loss += u.mean(dim=0).tanh().pow(2).mean()
+            return hat_u + u - u.detach()
+        else:
+            return hat_u
+
+
+class RandomBypass(nn.Module):
+    def __init__(self, m, p):
+        super().__init__()
+        self.m = m
+        self.p = p
+
+    def forward(self, x):
+        y = self.m(x)
+
+        if self.training:
+            u = (torch.rand(x.size(0), device=x.device) <= self.p).long()[:, None]
+            return (u * x.flatten(1) + (1 - u) * y.flatten(1)).reshape(x.size())
+        else:
+            return y
+
+
+######################################################################
+
 # A BracketedSequence is a BxTx... tensor with a first and a nb time
 # steps to compute.
 
@@ -114,6 +153,30 @@ class AddPositionalEncoding(nn.Module):
 ##############################
 
 
+class EncoderHead(nn.Module):
+    def __init__(self, dim_in, dim_out):
+        super().__init__()
+        self.fc = nn.Linear(dim_in, dim_out)
+
+    def forward(self, bs):
+        z = self.fc(bs.x).mean(dim=1)
+        return z, bs.x.shape
+
+
+class DecoderBottom(nn.Module):
+    def __init__(self, dim_in, dim_out):
+        super().__init__()
+        self.fc = nn.Linear(dim_in, dim_out)
+
+    def forward(self, z_shape):
+        z, shape = z_shape
+        y = self.fc(z)[:, None, :].expand(shape)
+        return BracketedSequence(y)
+
+
+##############################
+
+
 class QKVAttention(nn.Module):
     def __init__(
         self,
@@ -121,7 +184,7 @@ class QKVAttention(nn.Module):
         dim_qk,
         dim_v,
         nb_heads=1,
-        causal=False,
+        compute_attzero=None,
         attention_dropout=0.0,
     ):
         super().__init__()
@@ -129,7 +192,7 @@ class QKVAttention(nn.Module):
         def randw(*d):
             return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1]))
 
-        self.causal = causal
+        self.compute_attzero = compute_attzero
         self.attention_dropout = attention_dropout
         self.record_attention = False
 
@@ -141,10 +204,6 @@ class QKVAttention(nn.Module):
     def forward(self, bs_q):
         x_q = bs_q.x
 
-        assert (
-            self.causal or bs_q.complete()
-        ), "Partial evaluation is only possible for causal models"
-
         if bs_q.first == 0:
             self.cache_k = x_q.new_zeros(
                 x_q.size(0), self.w_k.size(0), x_q.size(1), self.w_k.size(1)
@@ -169,12 +228,12 @@ class QKVAttention(nn.Module):
             "nhtd,nhsd->nhts", q, self.cache_k[:, :, : bs_q.first + bs_q.nb]
         ) / math.sqrt(self.w_q.size(1))
 
-        if self.causal:
+        if self.compute_attzero is not None:
             if bs_q.first == 0:
-                self.cache_attzero = (
-                    torch.arange(x_q.size(1), device=q.device)[None, None, :, None]
-                    < torch.arange(x_q.size(1), device=q.device)[None, None, None, :]
-                )
+                self.cache_attzero = self.compute_attzero(
+                    torch.arange(x_q.size(1), device=q.device)[:, None],
+                    torch.arange(x_q.size(1), device=q.device)[None, :],
+                )[None, None, :, :]
             a = a.masked_fill(
                 self.cache_attzero[
                     :, :, bs_q.first : bs_q.first + bs_q.nb, : bs_q.first + bs_q.nb
@@ -201,6 +260,23 @@ class QKVAttention(nn.Module):
 ##############################
 
 
+class NoiseInjector(nn.Module):
+    def __init__(self, identifier=None):
+        super().__init__()
+        self.noise_std = 0.0
+        self.identifier = identifier
+
+    def forward(self, x):
+        if self.noise_std > 0:
+            x = x * (
+                1 - 2 * (torch.rand(x.size(), device=x.device) < self.noise_std).long()
+            )
+        return x
+
+
+##############################
+
+
 class MyGPT(nn.Module):
     def __init__(
         self,
@@ -210,7 +286,8 @@ class MyGPT(nn.Module):
         dim_hidden,
         nb_heads,
         nb_blocks,
-        causal=False,
+        compute_attzero=None,
+        autoencoder_dim=-1,
         dropout=0.0,
         len_max=1e5,
     ):
@@ -218,6 +295,8 @@ class MyGPT(nn.Module):
 
         assert dim_model % nb_heads == 0
 
+        self.temperature = 1.0
+
         self.embedding = nn.Sequential(
             CacheWrapper(nn.Embedding(vocabulary_size, dim_model), nn.Dropout(dropout)),
             AddPositionalEncoding(len_max),
@@ -228,19 +307,23 @@ class MyGPT(nn.Module):
         for b in range(nb_blocks):
             trunk_blocks += [
                 WithResidual(
-                    CacheWrapper(nn.LayerNorm((dim_model,))),
+                    CacheWrapper(
+                        nn.LayerNorm((dim_model,)),
+                        NoiseInjector(identifier=("attention", b)),
+                    ),
                     QKVAttention(
                         dim_in=dim_model,
                         dim_qk=dim_keys,
                         dim_v=dim_model // nb_heads,
                         nb_heads=nb_heads,
-                        causal=causal,
+                        compute_attzero=compute_attzero,
                         attention_dropout=dropout,
                     ),
                 ),
                 WithResidual(
                     CacheWrapper(
                         nn.LayerNorm((dim_model,)),
+                        NoiseInjector(identifier=("ffw", b)),
                         nn.Linear(in_features=dim_model, out_features=dim_hidden),
                         nn.ReLU(),
                         nn.Linear(in_features=dim_hidden, out_features=dim_model),
@@ -255,6 +338,26 @@ class MyGPT(nn.Module):
             nn.Linear(in_features=dim_model, out_features=vocabulary_size)
         )
 
+        # -------------------------------------------------------
+        if autoencoder_dim > 0:
+            self.encoder = nn.Sequential(
+                *(
+                    trunk_blocks[: nb_blocks // 2]
+                    + [EncoderHead(dim_model, autoencoder_dim)]
+                )
+            )
+
+            self.decoder = nn.Sequential(
+                *(
+                    [
+                        DecoderBottom(autoencoder_dim, dim_model),
+                        AddPositionalEncoding(len_max),
+                    ]
+                    + trunk_blocks[nb_blocks // 2 :]
+                )
+            )
+        # -------------------------------------------------------
+
         with torch.no_grad():
             for m in self.modules():
                 if isinstance(m, nn.Embedding):
@@ -264,50 +367,58 @@ class MyGPT(nn.Module):
                     m.weight.fill_(1.0)
 
     def forward(self, bs):
-        # print(f"GENERATE {bs.first} {bs.first+bs.nb}")
+        for m in self.modules():
+            m.loss = 0
+
         bs = BracketedSequence(F.pad(bs.x, (1, -1)), bs.first, bs.nb)
         bs = self.embedding(bs)
         bs = self.trunk(bs)
         bs = self.readout(bs)
+        bs.x[:, bs.first : bs.first + bs.nb] /= self.temperature
+
+        for m in self.modules():
+            self.loss += m.loss
+
         return bs
 
-    # ar_mask is a tensor with 0s and 1s, of same shape as input, with
-    # 1s where tokens should be generated. The others are kept
-    # unchanged.
+    def encode(self, bs):
+        bs = self.embedding(bs)
+        z = self.encoder(bs)
+        return z
 
-    def masked_inplace_autoregression(
-        self,
-        input,
-        ar_mask,
-        temperature=1.0,
-        deterministic_synthesis=False,
-        forbidden_tokens=None,
-        forced_biases=None,
-    ):
-        sum_logits = 0
-        to_generate = (ar_mask.sum(0) > 0).nonzero()
-        if to_generate.min() > 0:
-            self(
-                BracketedSequence(input, 0, to_generate.min())
-            )  # Needed to initialize the model's cache
-        for s in range(to_generate.min(), to_generate.max() + 1):
-            output = self(BracketedSequence(input, s, 1)).x
-            logits = output[:, s]
-            if forbidden_tokens is not None:
-                logits = logits.masked_fill(forbidden_tokens, float("-inf"))
-            if forced_biases is not None:
-                logits = logits + forced_biases[None, :]
-            if deterministic_synthesis:
-                t_next = logits.argmax(1)
+    def decode(self, z_shape):
+        bs = self.decoder(z_shape)
+        bs = self.readout(bs)
+        return bs
+
+    def partial_forward(self, bs, start_layer=None, end_layer=None):
+        if start_layer is None:
+            # print(f"GENERATE {bs.first} {bs.first+bs.nb}")
+            bs = BracketedSequence(F.pad(bs.x, (1, -1)), bs.first, bs.nb)
+            bs = self.embedding(bs)
+            if end_layer is not None:
+                return self.trunk[:end_layer](bs)
             else:
-                dist = torch.distributions.categorical.Categorical(logits=logits)
-                t_next = dist.sample()
-                sum_logits += logits.log_softmax(dim=-1)[
-                    torch.arange(t_next.size(0)), t_next
-                ]
-            input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
+                bs = self.trunk(bs)
+                bs = self.readout(bs)
+                return bs
+        else:
+            bs = self.trunk[start_layer:](bs)
+            bs = self.trunk(bs)
+            bs = self.readout(bs)
+            return bs
 
-        return sum_logits
+    def reset_transformations(self):
+        self.temperature = 1.0
+        for m in self.modules():
+            if isinstance(m, NoiseInjector):
+                m.noise_std = 0.0
+
+    def set_noise_injection(self, noise_std, identifier=None):
+        for m in self.modules():
+            if isinstance(m, NoiseInjector):
+                if identifier is None or identifier == m.identifier:
+                    m.noise_std = noise_std
 
     def record_attention(self, v=True):
         for m in self.modules():
@@ -338,7 +449,6 @@ if __name__ == "__main__":
         nb_heads=2,
         nb_blocks=2,
         dropout=0.1,
-        causal=True,
     )
 
     model.eval()