Update.
[mygptrnn.git] / mygpt.py
index 87071c3..5754d55 100755 (executable)
--- a/mygpt.py
+++ b/mygpt.py
@@ -181,7 +181,7 @@ def nsum_shape(X, Y_init):
 class DumbRec(nn.Module):
     def __init__(
         self,
-        dim_in,
+        dim_model,
         dim_qk,
         dim_v,
         nb_heads,
@@ -199,11 +199,11 @@ class DumbRec(nn.Module):
 
         self.k_star = randw(nb_lines, dim_qk)
 
-        self.w_qw = randw(nb_heads, dim_qk, dim_in)
-        self.w_qr = randw(nb_heads, dim_qk, dim_in)
-        # self.w_k = randw(nb_heads, dim_qk, dim_in)
-        self.w_v = randw(nb_heads, dim_v, dim_in)
-        self.w_o = randw(dim_v * nb_heads, dim_in)
+        self.w_qw = randw(nb_heads, dim_qk, dim_model)
+        self.w_qr = randw(nb_heads, dim_qk, dim_model)
+        # self.w_k = randw(nb_heads, dim_qk, dim_model)
+        self.w_v = randw(nb_heads, dim_v, dim_model)
+        self.w_o = randw(dim_v * nb_heads, dim_model)
 
     def reset_inner_loss(self):
         self.acc_attention = 0
@@ -310,7 +310,7 @@ class DumbRec(nn.Module):
 class KVRec(nn.Module):
     def __init__(
         self,
-        dim_in,
+        dim_model,
         dim_qk,
         dim_v,
         nb_heads,
@@ -328,11 +328,11 @@ class KVRec(nn.Module):
 
         self.k_star = randw(nb_lines, dim_qk)
 
-        self.w_qw = randw(nb_heads, dim_qk, dim_in)
-        self.w_qr = randw(nb_heads, dim_qk, dim_in)
-        self.w_k = randw(nb_heads, dim_qk, dim_in)
-        self.w_v = randw(nb_heads, dim_v, dim_in)
-        self.w_o = randw(dim_v * nb_heads, dim_in)
+        self.w_qw = randw(nb_heads, dim_qk, dim_model)
+        self.w_qr = randw(nb_heads, dim_qk, dim_model)
+        self.w_k = randw(nb_heads, dim_qk, dim_model)
+        self.w_v = randw(nb_heads, dim_v, dim_model)
+        self.w_o = randw(dim_v * nb_heads, dim_model)
 
     def reset_inner_loss(self):
         self.acc_attention = 0
@@ -441,6 +441,11 @@ class KVRec(nn.Module):
 ##############################
 
 
+# Returns a tensor with an additional index at rank win_dim, that move
+# along the same dimension as dim, on a domain {0...win_size-1}, and
+# dim is restricted on a domain reduced by win_size-1 values.
+
+
 def moving_window(x, dim, win_dim, win_size):
     size, stride = x.size(), x.stride()
     size = size[:dim] + (size[dim] - win_size + 1,) + size[dim + 1 :]
@@ -452,11 +457,92 @@ def moving_window(x, dim, win_dim, win_size):
 
 ##############################
 
+# This is one order of magnitude more complicated than I expected, not
+# elegant, slow, hopefully not buggy
+
+
+def flash_back_time_src(N, H, t0, t1, CL, CH, proba, device):
+    # starting flash backs
+    fb_start = (torch.rand(N, CH, t1 - t0, device=device) <= proba).long()
+    fb_start[:, :, -CL:] = 0
+    fb_start[:, :, :CL] = 0
+
+    # Remove series longer than CL
+    fb_body = fb_start.clone()
+    fb_body[:, :, CL + 1 :] -= fb_start[:, :, : -(CL + 1)]
+    fb_body = fb_body.cumsum(dim=2)
+    fb_start = fb_start * (fb_body == 1)
+
+    # Set a origin source time (starting time of the chunck to copy
+    # here) We set it as the current time minus a multiple of CL to be
+    # consistent with the "rolling" caterpillar
+    t = torch.arange(fb_start.size(2), device=fb_start.device)[None, None, :]
+    src_time = fb_start * (
+        t
+        - CL
+        * (
+            1
+            + (
+                torch.rand(fb_start.size(), device=fb_start.device) * (t // CL - 1)
+            ).long()
+        )
+    )
+    src_time[:, :, CL:] -= src_time.clone()[:, :, :-CL]
+    src_time = src_time.cumsum(dim=2)
+
+    src_head = fb_start * torch.randint(H, fb_start.size(), device=fb_start.device)
+    src_head[:, :, CL:] -= src_head.clone()[:, :, :-CL]
+    src_head = src_head.cumsum(dim=2)
+
+    # combine
+    src_delta = fb_start.clone()
+    src_delta[:, :, CL:] -= fb_start[:, :, :-CL]
+    src_delta = src_delta.cumsum(dim=2)
+    src_delta[:, :, CL:] -= CL * fb_start[:, :, :-CL]
+    src_time += src_delta.cumsum(dim=2) - 1
+
+    return src_time, src_head
+
+
+def insert_flash_back(rec_V, V, rec_K, K, t0, t1, CL, proba):
+    N, H, CH = V.size(0), V.size(1), rec_V.size(1)
+
+    fbt, fbh = flash_back_time_src(N, H, t0, t1, CL, CH, proba, rec_V.device)
+
+    fbt_V = fbt[:, :, :, None].expand_as(rec_V[:, :, t0:t1])
+    fbh_V = fbh[:, :, :, None].expand_as(rec_V[:, :, t0:t1])
+    t = fbt_V.clamp(min=0)
+    n = torch.arange(V.size(0), device=V.device)[:, None, None, None].expand_as(
+        rec_V[:, :, t0:t1]
+    )
+    d = torch.arange(V.size(3), device=V.device)[None, None, None, :].expand_as(
+        rec_V[:, :, t0:t1]
+    )
+    q = V[:, :, t0:t1][n, fbh_V, t, d]
+    rec_V[:, :, t0:t1] = q * (fbt_V >= 0) + rec_V[:, :, t0:t1] * (fbt_V < 0)
+
+    fbt_K = fbt[:, :, :, None].expand_as(rec_K[:, :, t0:t1])
+    fbh_K = fbh[:, :, :, None].expand_as(rec_K[:, :, t0:t1])
+    t = fbt_K.clamp(min=0)
+    n = torch.arange(K.size(0), device=K.device)[:, None, None, None].expand_as(
+        rec_K[:, :, t0:t1]
+    )
+    d = torch.arange(K.size(3), device=K.device)[None, None, None, :].expand_as(
+        rec_K[:, :, t0:t1]
+    )
+    q = K[:, :, t0:t1][n, fbh_K, t, d]
+    rec_K[:, :, t0:t1] = q * (fbt_K >= 0) + rec_K[:, :, t0:t1] * (fbt_K < 0)
+
+    # print("SANITY", (fbt_K >=0).float().sum()/fbt_K.numel())
+
+
+######################################################################
+
 
 class Caterpillar(nn.Module):
     def __init__(
         self,
-        dim_in,
+        dim_model,
         dim_qk,
         dim_v,
         nb_heads,
@@ -476,17 +562,20 @@ class Caterpillar(nn.Module):
         self.caterpillar_height = caterpillar_height
         self.attention_dropout = attention_dropout
 
-        self.w_G = randw(nb_heads, caterpillar_height, dim_in)
+        warnings.warn("flash back", RuntimeWarning)
+        self.proba_flashback = 0.1
+
+        self.w_G = randw(nb_heads, caterpillar_height, dim_model)
         self.b_G = nn.Parameter(
             torch.full(
                 (nb_heads, caterpillar_height), -math.log(caterpillar_height - 1)
             )
         )
 
-        self.w_K = randw(nb_heads, dim_qk, dim_in)
-        self.w_V = randw(nb_heads, dim_v, dim_in)
-        self.w_Q = randw(nb_heads, dim_qk, dim_in)
-        self.w_O = randw(dim_v * nb_heads, dim_in)
+        self.w_K = randw(nb_heads, dim_qk, dim_model)
+        self.w_V = randw(nb_heads, dim_v, dim_model)
+        self.w_Q = randw(nb_heads, dim_qk, dim_model)
+        self.w_O = randw(dim_v * nb_heads, dim_model)
 
         self.init_K_rec = randw(caterpillar_height, caterpillar_length, dim_qk)
         self.init_V_rec = randw(caterpillar_height, caterpillar_length, dim_v)
@@ -507,9 +596,10 @@ class Caterpillar(nn.Module):
 
         N = bs.x.size(0)
         T = bs.x.size(1)
+        H = self.w_V.size(0)
         DV = self.w_V.size(1)
         DK = self.w_K.size(1)
-        Dout = self.w_O.size(1)
+        DM = self.w_O.size(1)
         CH = self.caterpillar_height
         CL = self.caterpillar_length
 
@@ -517,23 +607,39 @@ class Caterpillar(nn.Module):
             t0 >= CL and (t1 - t0) % CL == 0
         ), f"bs.first should be greater than caterpillar_length, and bs.nb should be a multiple of caterpillar_length"
 
+        # We cache values to deal efficiently with auto-regression
+
         if bs.init_cache:
             self.rec_V = X.new_zeros(N, CH, T, DV)
-            self.rec_V[:, :, t0 - CL : t0] = self.init_V_rec[None, :, :, :]
             self.rec_K = X.new_zeros(N, CH, T, DK)
+            # We start the recurrent sequences with optimizable
+            # initial values. No idea if it helps.
+            self.rec_V[:, :, t0 - CL : t0] = self.init_V_rec[None, :, :, :]
             self.rec_K[:, :, t0 - CL : t0] = self.init_K_rec[None, :, :, :]
-            self.cache_Y = X.new_zeros(N, T, Dout)
+
+            self.cache_Y = X.new_zeros(N, T, DM)
 
         ######################################################################
         # Compute the recurrent state
 
+        # This is the Gating sequence that modulates the storing of
+        # the new key and value in the CH pairs of the current
+        # stack. The CH gating values are independent, which means
+        # that the current K/V could be stored in multiple pairs of the
+        # recurrent state, or not at all.
+
         G = (
             torch.einsum("ntc,hec->nhet", X, self.w_G) + self.b_G[None, :, :, None]
         ).sigmoid()
 
+        # That bas a bad idea
+        # G = F.dropout(G, self.attention_dropout, self.training)
+
         V = torch.einsum("ntc,hdc->nhtd", X, self.w_V)
         K = torch.einsum("ntc,hdc->nhtd", X, self.w_K)
 
+        # We prepare the arguments for the parallel scan
+
         A = 1 - G.sum(1)
         gated_V = torch.einsum("nhet,nhtd->netd", G, V)
         gated_K = torch.einsum("nhet,nhtd->netd", G, K)
@@ -541,6 +647,12 @@ class Caterpillar(nn.Module):
         init_rec_V = self.rec_V[:, :, t0 - CL : t0]
         init_rec_K = self.rec_K[:, :, t0 - CL : t0]
 
+        # Here there is a trick: Since the stack at time t is computed
+        # by updating that at time t-L, the parallel scan operates
+        # with a period of L. To do so we split the time indexing in
+        # two axes, the second of size CL, and run the parallel scan
+        # using the other as the sequence index.
+
         A = A.unflatten(2, (-1, CL))
         gated_V = gated_V.unflatten(2, (-1, CL))
         gated_K = gated_K.unflatten(2, (-1, CL))
@@ -548,38 +660,85 @@ class Caterpillar(nn.Module):
         next_V = pscan_dim(A, gated_V, init_rec_V, dim=2)
         next_K = pscan_dim(A, gated_K, init_rec_K, dim=2)
 
+        # Put back the sequence index
+
         self.rec_V[:, :, t0:t1] = next_V.flatten(2, 3)
         self.rec_K[:, :, t0:t1] = next_K.flatten(2, 3)
 
+        if self.training and self.proba_flashback:
+            insert_flash_back(
+                self.rec_V,
+                V,
+                self.rec_K,
+                K,
+                t0,
+                t1,
+                CL,
+                proba=self.proba_flashback / CL,
+            )
+
+            # n = torch.arange(N, device=X.device)[:, None, None, None]
+            # t = torch.arange(t0, t1, device=X.device)[None, None, :, None]
+            # dv = torch.arange(DV)[None, None, None, :]
+            # dk = torch.arange(DK)[None, None, None, :]
+
+            # u = (
+            # torch.rand(N, CH, t1 - t0, 1, device=X.device).mul(t).long() // CL
+            # ) * CL
+
+            # src_time = t - u - t0
+            # src_head = torch.randint(H, (N, CH, t1 - t0, 1), device=X.device)
+
+            # mk = (
+            # torch.rand(self.rec_V[:, :, t0:t1].size()) <= self.proba_flashback
+            # ).long()
+            # self.rec_V[:, :, t0:t1] = V[n, src_head, src_time, dv]
+            # self.rec_K[:, :, t0:t1] = K[n, src_head, src_time, dk]
+
+        exit(0)
+
         ######################################################################
         # compute the readout
 
         Q = torch.einsum("ntc,hdc->nhtd", X, self.w_Q)
 
-        uv = moving_window(
+        # We build tensors NxHxTxFxL where N is the sample index, H
+        # the head, T the time, F the row in the caterpillar, and L
+        # the column in the caterpillar
+
+        windowed_V = moving_window(
             self.rec_V[:, :, t0 - CL + 1 : t1], dim=2, win_dim=3, win_size=CL
         )
 
-        uk = moving_window(
+        windowed_K = moving_window(
             self.rec_K[:, :, t0 - CL + 1 : t1], dim=2, win_dim=3, win_size=CL
         )
 
+        # We have an attention score for each of the CHxCL values
+
         ar = torch.einsum(
             "nhtd,nftld->nhtfl",
             Q,
-            uk,
+            windowed_K,
         ) / math.sqrt(DK)
 
+        # softmax can operate only on one dimension, hence the
+        # flattening
+
         ar = ar.flatten(3).softmax(dim=3).view(ar.size())
 
         ar = F.dropout(ar, self.attention_dropout, self.training)
 
+        # Compute the output for each head, flatten to concatenate
+
         Y = torch.einsum(
             "nhtfl,nftld->nthd",
             ar,
-            uv,
+            windowed_V,
         ).flatten(2)
 
+        # Compute the final output
+
         self.cache_Y[:, t0:t1] = Y @ self.w_O
 
         return BracketedSequence(self.cache_Y, t0, t1 - t0, bs.init_cache)
@@ -591,7 +750,7 @@ class Caterpillar(nn.Module):
 class QKVAttention(nn.Module):
     def __init__(
         self,
-        dim_in,
+        dim_model,
         dim_qk,
         dim_v,
         nb_heads=1,
@@ -607,10 +766,10 @@ class QKVAttention(nn.Module):
         self.attention_dropout = attention_dropout
         self.record_attention = False
 
-        self.w_q = randw(nb_heads, dim_qk, dim_in)
-        self.w_k = randw(nb_heads, dim_qk, dim_in)
-        self.w_v = randw(nb_heads, dim_v, dim_in)
-        self.w_o = randw(dim_v * nb_heads, dim_in)
+        self.w_q = randw(nb_heads, dim_qk, dim_model)
+        self.w_k = randw(nb_heads, dim_qk, dim_model)
+        self.w_v = randw(nb_heads, dim_v, dim_model)
+        self.w_o = randw(dim_v * nb_heads, dim_model)
 
     def forward(self, bs):
         x_q = bs.x
@@ -714,7 +873,7 @@ class MyGPT(nn.Module):
         def attlayer():
             if attention_layer == "mha":
                 return QKVAttention(
-                    dim_in=dim_model,
+                    dim_model=dim_model,
                     dim_qk=dim_keys,
                     dim_v=dim_model // nb_heads,
                     nb_heads=nb_heads,
@@ -723,7 +882,7 @@ class MyGPT(nn.Module):
                 )
             elif attention_layer == "dumbrec":
                 return DumbRec(
-                    dim_in=dim_model,
+                    dim_model=dim_model,
                     dim_qk=dim_keys,
                     dim_v=dim_rec_v,
                     nb_heads=nb_heads,
@@ -732,7 +891,7 @@ class MyGPT(nn.Module):
                 )
             elif attention_layer == "kvrec":
                 return KVRec(
-                    dim_in=dim_model,
+                    dim_model=dim_model,
                     dim_qk=dim_keys,
                     dim_v=dim_rec_v,
                     nb_heads=nb_heads,
@@ -741,7 +900,7 @@ class MyGPT(nn.Module):
                 )
             elif attention_layer == "caterpillar":
                 return Caterpillar(
-                    dim_in=dim_model,
+                    dim_model=dim_model,
                     dim_qk=dim_keys,
                     dim_v=dim_rec_v,
                     nb_heads=nb_heads,
@@ -881,7 +1040,7 @@ if __name__ == "__main__":
     print("Basic check.")
 
     m = Caterpillar(
-        dim_in=4,
+        dim_model=4,
         dim_qk=3,
         dim_v=7,
         nb_heads=1,