Update.
[picoclvr.git] / main.py
diff --git a/main.py b/main.py
index bb1e7b4..b774fce 100755 (executable)
--- a/main.py
+++ b/main.py
@@ -32,12 +32,15 @@ parser = argparse.ArgumentParser(
 )
 
 parser.add_argument(
-    "--task", type=str, default="picoclvr", help="picoclvr, mnist, maze, snake, stack"
+    "--task",
+    type=str,
+    default="picoclvr",
+    help="picoclvr, mnist, maze, snake, stack, expr",
 )
 
 parser.add_argument("--log_filename", type=str, default="train.log", help=" ")
 
-parser.add_argument("--result_dir", type=str, default="results_default")
+parser.add_argument("--result_dir", type=str, default=None)
 
 parser.add_argument("--seed", type=int, default=0)
 
@@ -123,22 +126,8 @@ args = parser.parse_args()
 
 assert args.picocvlr_prune_properties in {"none", "train+eval", "eval"}
 
-try:
-    os.mkdir(args.result_dir)
-except FileExistsError:
-    if not args.overwrite_results:
-        print(f"result directory {args.result_dir} already exists")
-        exit(1)
-
-log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
-
-if args.seed >= 0:
-    # torch.backends.cudnn.deterministic = True
-    # torch.backends.cudnn.benchmark = False
-    # torch.use_deterministic_algorithms(True)
-    torch.manual_seed(args.seed)
-    if torch.cuda.is_available():
-        torch.cuda.manual_seed_all(args.seed)
+if args.result_dir is None:
+    args.result_dir = f"results_{args.task}"
 
 ######################################################################
 
@@ -173,6 +162,12 @@ default_args = {
         "nb_train_samples": 100000,
         "nb_test_samples": 1000,
     },
+    "expr": {
+        "nb_epochs": 5,
+        "batch_size": 25,
+        "nb_train_samples": 100000,
+        "nb_test_samples": 1000,
+    },
 }
 
 if args.task in default_args:
@@ -182,6 +177,25 @@ if args.task in default_args:
 
 ######################################################################
 
+try:
+    os.mkdir(args.result_dir)
+except FileExistsError:
+    if not args.overwrite_results:
+        print(f"result directory {args.result_dir} already exists")
+        exit(1)
+
+log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
+
+if args.seed >= 0:
+    # torch.backends.cudnn.deterministic = True
+    # torch.backends.cudnn.benchmark = False
+    # torch.use_deterministic_algorithms(True)
+    torch.manual_seed(args.seed)
+    if torch.cuda.is_available():
+        torch.cuda.manual_seed_all(args.seed)
+
+######################################################################
+
 
 def log_string(s):
     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
@@ -212,9 +226,8 @@ def masked_inplace_autoregression(
     progress_bar_desc="autoregression",
     device=torch.device("cpu"),
 ):
-    # p = logits.softmax(1)
-    # entropy[:,s]= p.xlogy(p).sum(1) / math.log(2)
     batches = zip(input.split(batch_size), ar_mask.split(batch_size))
+
     if progress_bar_desc is not None:
         batches = tqdm.tqdm(
             batches,
@@ -222,6 +235,7 @@ def masked_inplace_autoregression(
             desc=progress_bar_desc,
             total=input.size(0) // batch_size,
         )
+
     for input, ar_mask in batches:
         i = (ar_mask.sum(0) > 0).nonzero()
         if i.min() > 0:
@@ -704,14 +718,14 @@ class TaskMaze(Task):
                 model, "train", nb_to_use=1000
             )
             log_string(
-                f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
+                f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
             )
 
             test_nb_total, test_nb_correct, count = self.compute_error(
                 model, "test", nb_to_use=1000
             )
             log_string(
-                f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+                f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
             )
 
             if count is not None:
@@ -857,7 +871,7 @@ class TaskSnake(Task):
             )
 
             log_string(
-                f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+                f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
             )
 
             model.train(t)
@@ -914,13 +928,124 @@ class TaskStack(Task):
             self.device,
         )
 
-        mask = self.test_input.clone()
-        stack.remove_popped_values(mask, self.nb_stacks, self.nb_digits)
-        mask = mask != self.test_input
-        counts = self.test_stack_counts.flatten()[mask.flatten()]
+        i = torch.logical_and(self.test_input % 2 == 1, self.test_input < 2 * nb_stacks)
+        counts = self.test_stack_counts.flatten()[i.flatten()]
         counts = F.one_hot(counts).sum(0)
-        log_string(f"stack_count {counts}")
+        log_string(f"test_pop_stack_counts {counts}")
+
+        self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
+
+    def batches(self, split="train", nb_to_use=-1, desc=None):
+        assert split in {"train", "test"}
+        input = self.train_input if split == "train" else self.test_input
+        if nb_to_use > 0:
+            input = input[:nb_to_use]
+        if desc is None:
+            desc = f"epoch-{split}"
+        for batch in tqdm.tqdm(
+            input.split(self.batch_size), dynamic_ncols=True, desc=desc
+        ):
+            yield batch
+
+    def vocabulary_size(self):
+        return self.nb_codes
+
+    def produce_results(self, n_epoch, model):
+        with torch.autograd.no_grad():
+            t = model.training
+            model.eval()
+
+            def compute_nb_correct(input):
+                result = input.clone()
+                stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
+                ar_mask = (result != input).long()
+                masked_inplace_autoregression(
+                    model, self.batch_size, result, ar_mask, device=self.device
+                )
+
+                errors = ((result != input).long() * ar_mask).reshape(
+                    -1, 1 + self.nb_digits
+                )
+                ar_mask = ar_mask.reshape(-1, 1 + self.nb_digits)
+
+                nb_total = ar_mask.max(1).values.sum()
+                nb_correct = nb_total - errors.max(1).values.sum()
+
+                return nb_total, nb_correct
+
+            test_nb_total, test_nb_correct = compute_nb_correct(self.test_input[:1000])
+
+            log_string(
+                f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+            )
+
+            ##############################################################
+            # Log a few generated sequences
+            input = self.test_input[:10, : 12 * (1 + self.nb_digits)]
+            result = input.clone()
+            stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
+            ar_mask = (result != input).long()
+            for n in range(result.size(0)):
+                log_string(
+                    f"test_before {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
+                )
+            masked_inplace_autoregression(
+                model, self.batch_size, result, ar_mask, device=self.device
+            )
+            for n in range(result.size(0)):
+                log_string(
+                    f"test_after  {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
+                )
+            ##############################################################
+
+            model.train(t)
+
+
+######################################################################
+
 
+import expr
+
+
+class TaskExpr(Task):
+    def __init__(
+        self,
+        nb_train_samples,
+        nb_test_samples,
+        batch_size,
+        device=torch.device("cpu"),
+    ):
+        self.batch_size = batch_size
+        self.device = device
+
+        train_sequences = expr.generate_sequences(nb_train_samples)
+        test_sequences = expr.generate_sequences(nb_test_samples)
+        self.char2id = dict(
+            [
+                (c, n)
+                for n, c in enumerate(set("".join(train_sequences + test_sequences)))
+            ]
+        )
+        self.id2char = dict([(n, c) for n, c in self.char2id.items()])
+        len_max = max([len(x) for x in train_sequences + test_sequences])
+        self.train_input = torch.cat(
+            [
+                torch.tensor(
+                    [char2id(c) for c in s + " " * (len_max - len(s))]
+                    for s in train_sequences
+                )
+            ],
+            0,
+        )
+        self.test_input = torch.cat(
+            [
+                torch.tensor(
+                    [char2id(c) for c in s + " " * (len_max - len(s))]
+                    for s in test_sequences
+                )
+            ],
+            0,
+        )
         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
 
     def batches(self, split="train", nb_to_use=-1, desc=None):
@@ -939,6 +1064,7 @@ class TaskStack(Task):
         return self.nb_codes
 
     def produce_results(self, n_epoch, model):
+        # !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
         with torch.autograd.no_grad():
             t = model.training
             model.eval()
@@ -964,11 +1090,12 @@ class TaskStack(Task):
             test_nb_total, test_nb_correct = compute_nb_correct(self.test_input[:1000])
 
             log_string(
-                f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+                f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
             )
 
-            #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-            input = self.test_input[:10, :50]
+            ##############################################################
+            # Log a few generated sequences
+            input = self.test_input[:10, : 12 * (1 + self.nb_digits)]
             result = input.clone()
             stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
             ar_mask = (result != input).long()
@@ -983,7 +1110,7 @@ class TaskStack(Task):
                 log_string(
                     f"test_after  {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
                 )
-            #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
+            ##############################################################
 
             model.train(t)
 
@@ -1064,6 +1191,14 @@ elif args.task == "stack":
         device=device,
     )
 
+elif args.task == "expr":
+    task = TaskExpr(
+        nb_train_samples=args.nb_train_samples,
+        nb_test_samples=args.nb_test_samples,
+        batch_size=args.batch_size,
+        device=device,
+    )
+
 else:
     raise ValueError(f"Unknown task {args.task}")