Update.
[culture.git] / main.py
diff --git a/main.py b/main.py
index 3db87df..aefc3a1 100755 (executable)
--- a/main.py
+++ b/main.py
@@ -5,16 +5,18 @@
 
 # Written by Francois Fleuret <francois@fleuret.org>
 
-# torch.backends.cuda.matmul.allow_tf23
-# torch.autocast(torch.bfloat16)
-
-import math, sys, argparse, time, tqdm, itertools, os
+import math, sys, argparse, time, tqdm, os, datetime, warnings
 
 import torch, torchvision
 from torch import nn
 from torch.nn import functional as F
 
-import mygpt, tensorstack
+import ffutils
+
+import mygpt
+import sky, grids, quiz_machine
+
+# world quizzes vs. culture quizzes
 
 ######################################################################
 
@@ -27,83 +29,164 @@ else:
 ######################################################################
 
 parser = argparse.ArgumentParser(
-    description="An implementation of GPT with cache to solve a toy geometric reasoning task."
+    description="An implementation of GPT with cache.",
+    formatter_class=argparse.ArgumentDefaultsHelpFormatter,
 )
 
-parser.add_argument("--task", type=str, default="picoclvr")
-
 parser.add_argument("--log_filename", type=str, default="train.log")
 
-parser.add_argument("--result_dir", type=str, default="results_default")
+parser.add_argument("--result_dir", type=str, default=None)
 
 parser.add_argument("--seed", type=int, default=0)
 
-parser.add_argument("--nb_epochs", type=int, default=25)
+parser.add_argument("--max_percents_of_test_in_train", type=int, default=1)
+
+########################################
+
+parser.add_argument("--nb_epochs", type=int, default=10000)
 
-parser.add_argument("--batch_size", type=int, default=25)
+parser.add_argument("--batch_size", type=int, default=None)
 
-parser.add_argument("--nb_train_samples", type=int, default=250000)
+parser.add_argument("--physical_batch_size", type=int, default=None)
 
-parser.add_argument("--nb_test_samples", type=int, default=10000)
+parser.add_argument("--nb_train_samples", type=int, default=None)
 
-parser.add_argument("--optim", type=str, default="adam")
+parser.add_argument("--nb_test_samples", type=int, default=None)
 
-parser.add_argument("--learning_rate", type=float, default=1e-4)
+parser.add_argument("--learning_rate", type=float, default=5e-4)
 
-parser.add_argument("--learning_rate_schedule", type=str, default="10: 2e-5,30: 4e-6")
+########################################
 
-parser.add_argument("--dim_model", type=int, default=512)
+parser.add_argument("--model", type=str, default=None)
 
-parser.add_argument("--dim_keys", type=int, default=64)
+parser.add_argument("--dim_model", type=int, default=None)
 
-parser.add_argument("--dim_hidden", type=int, default=2048)
+parser.add_argument("--dim_keys", type=int, default=None)
 
-parser.add_argument("--nb_heads", type=int, default=8)
+parser.add_argument("--dim_hidden", type=int, default=None)
 
-parser.add_argument("--nb_blocks", type=int, default=12)
+parser.add_argument("--nb_heads", type=int, default=None)
+
+parser.add_argument("--nb_blocks", type=int, default=None)
 
 parser.add_argument("--dropout", type=float, default=0.1)
 
+########################################
+
 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
 
-parser.add_argument("--no_checkpoint", action="store_true", default=False)
+parser.add_argument("--problem", type=str, default="grids")
 
-parser.add_argument("--overwrite_results", action="store_true", default=False)
+parser.add_argument("--nb_threads", type=int, default=-1)
 
-parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
+parser.add_argument("--nb_gpts", type=int, default=5)
 
-##############################
-# picoclvr options
+parser.add_argument("--min_to_validate", type=int, default=None)
 
-parser.add_argument("--picoclvr_nb_colors", type=int, default=5)
+parser.add_argument("--max_to_validate", type=int, default=None)
 
-parser.add_argument("--picoclvr_height", type=int, default=12)
+parser.add_argument("--accuracy_to_make_c_quizzes", type=float, default=0.975)
 
-parser.add_argument("--picoclvr_width", type=int, default=16)
+parser.add_argument("--generation_temperature", type=float, default=2.0)
 
-parser.add_argument("--picocvlr_prune_properties", type=str, default="none")
+parser.add_argument("--deterministic_validation", action="store_true", default=False)
 
-##############################
-# Maze options
+parser.add_argument("--bidirectional_validation", action="store_true", default=False)
+
+parser.add_argument("--dirty_debug", action="store_true", default=False)
 
-parser.add_argument("--maze_height", type=int, default=13)
+######################################################################
 
-parser.add_argument("--maze_width", type=int, default=21)
+parser.add_argument("--sky_height", type=int, default=6)
 
-parser.add_argument("--maze_nb_walls", type=int, default=15)
+parser.add_argument("--sky_width", type=int, default=8)
+
+parser.add_argument("--sky_nb_birds", type=int, default=3)
+
+parser.add_argument("--sky_nb_iterations", type=int, default=2)
+
+parser.add_argument("--sky_speed", type=int, default=3)
 
 ######################################################################
 
 args = parser.parse_args()
 
-assert args.picocvlr_prune_properties in {"none", "train+eval", "eval"}
+if args.min_to_validate is None:
+    args.min_to_validate = args.nb_gpts - 1
+
+if args.max_to_validate is None:
+    args.max_to_validate = args.nb_gpts - 1
+
+if args.result_dir is None:
+    args.result_dir = f"results_culture"
+
+######################################################################
+
+default_args = {
+    "model": "37M",
+    "batch_size": 25,
+    "nb_train_samples": 100000,
+    "nb_test_samples": 10000,
+}
+
+for k, v in default_args.items():
+    if getattr(args, k) is None:
+        setattr(args, k, v)
+
+######################################################################
+
+default_model_args = {
+    "17K": {
+        "dim_model": 32,
+        "dim_keys": 32,
+        "dim_hidden": 32,
+        "nb_heads": 2,
+        "nb_blocks": 2,
+    },
+    "4M": {
+        "dim_model": 256,
+        "dim_keys": 32,
+        "dim_hidden": 1024,
+        "nb_heads": 4,
+        "nb_blocks": 6,
+    },
+    "37M": {
+        "dim_model": 512,
+        "dim_keys": 64,
+        "dim_hidden": 2048,
+        "nb_heads": 8,
+        "nb_blocks": 12,
+    },
+    "122M": {
+        "dim_model": 768,
+        "dim_keys": 64,
+        "dim_hidden": 2048,
+        "nb_heads": 8,
+        "nb_blocks": 24,
+    },
+    "352M": {
+        "dim_model": 1024,
+        "dim_keys": 64,
+        "dim_hidden": 2048,
+        "nb_heads": 8,
+        "nb_blocks": 48,
+    },
+}
+
+if args.model in default_model_args:
+    for k, v in default_model_args[args.model].items():
+        if getattr(args, k) is None:
+            setattr(args, k, v)
+else:
+    raise ValueError(f"Unknown model {args.model}")
+
+######################################################################
 
 try:
     os.mkdir(args.result_dir)
 except FileExistsError:
-    if not args.overwrite_results:
-        print(f"result directory {args.result_dir} already exists")
-        exit(1)
+    print(f"result directory {args.result_dir} already exists")
+    exit(1)
 
 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
 
@@ -129,748 +212,466 @@ def log_string(s):
     sys.stdout.flush()
 
 
+log_string(f"argv {' '.join(sys.argv)}")
+
 for n in vars(args):
     log_string(f"args.{n} {getattr(args, n)}")
 
-######################################################################
 
+######################################################################
 
-def masked_inplace_autoregression(
-    model, batch_size, input, ar_mask, forbidden_tokens=None, device=torch.device("cpu")
-):
-    for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
-        i = (ar_mask.sum(0) > 0).nonzero()
-        if i.min() > 0:
-            model(
-                mygpt.BracketedSequence(input, 0, i.min())
-            )  # Needed to initialize the model's cache
-        for s in range(i.min(), i.max() + 1):
-            output = model(mygpt.BracketedSequence(input, s, 1)).x
-            logits = output[:, s]
-            if forbidden_tokens is not None:
-                logits = logits.masked_fill(forbidden_tokens, float("-inf"))
-            if args.deterministic_synthesis:
-                t_next = logits.argmax(1)
-            else:
-                dist = torch.distributions.categorical.Categorical(logits=logits)
-                t_next = dist.sample()
-            input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
+if args.dirty_debug:
+    args.nb_train_samples = 2500
+    args.nb_test_samples = 100
 
+if args.physical_batch_size is None:
+    args.physical_batch_size = args.batch_size
+else:
+    assert args.batch_size % args.physical_batch_size == 0
+
+assert args.nb_train_samples % args.batch_size == 0
+assert args.nb_test_samples % args.batch_size == 0
+
+if args.problem == "sky":
+    problem = sky.Sky(
+        height=args.sky_height,
+        width=args.sky_width,
+        nb_birds=args.sky_nb_birds,
+        nb_iterations=args.sky_nb_iterations,
+        speed=args.sky_speed,
+        max_nb_cached_chunks=args.nb_train_samples // 100,
+        chunk_size=100,
+        nb_threads=args.nb_threads,
+    )
+    back_accuracy = False
+elif args.problem == "grids":
+    problem = grids.Grids(
+        device=device,
+        max_nb_cached_chunks=args.nb_train_samples // 100,
+        chunk_size=100,
+        nb_threads=args.nb_threads,
+    )
+    back_accuracy = True
+else:
+    raise ValueError
+
+quiz_machine = quiz_machine.QuizMachine(
+    problem=problem,
+    nb_train_samples=args.nb_train_samples,
+    nb_test_samples=args.nb_test_samples,
+    back_accuracy=back_accuracy,
+    batch_size=args.physical_batch_size,
+    result_dir=args.result_dir,
+    logger=log_string,
+    device=device,
+)
 
 ######################################################################
 
+log_string(f"device {device}")
+
+vocabulary_size = quiz_machine.vocabulary_size()
 
-class Task:
-    def batches(self, split="train"):
-        pass
+log_string(f"vocabulary_size {vocabulary_size}")
 
-    def vocabulary_size(self):
-        pass
+######################################################################
 
-    def produce_results(self, n_epoch, model):
-        pass
+# Compute the entropy of the training tokens
 
+token_count = 0
+for input in quiz_machine.batches(split="train", desc="train-entropy"):
+    token_count += F.one_hot(input, num_classes=quiz_machine.vocabulary_size()).sum(
+        (0, 1)
+    )
+token_probas = token_count / token_count.sum()
+entropy = -torch.xlogy(token_probas, token_probas).sum()
+train_set_perplexity = math.exp(entropy)
 
 ######################################################################
+# A bit of paranoia never hurts
+
+if args.max_percents_of_test_in_train >= 0:
+
+    def subsets_as_tuples(batches, cs):
+        s = set()
+        for batch in batches:
+            for x in batch:
+                s.add(tuple([v.item() for v in x]))
+                if len(s) == cs:
+                    yield s
+                    s = set()
+        yield s
+
+    nb_test, nb_in_train = 0, 0
+    for test_subset in subsets_as_tuples(
+        quiz_machine.batches(split="test", desc="test-check"), 25000
+    ):
+        in_train = set()
+        for train_subset in subsets_as_tuples(
+            quiz_machine.batches(split="train", desc="train-check"), 25000
+        ):
+            in_train.update(test_subset.intersection(train_subset))
+        nb_in_train += len(in_train)
+        nb_test += len(test_subset)
 
-import picoclvr
-
-
-class TaskPicoCLVR(Task):
-    # Make a tensor from a list of strings
-    def tensorize(self, descr):
-        token_descr = [s.strip().split(" ") for s in descr]
-        l = max([len(s) for s in token_descr])
-        token_descr = [s + ["<nul>"] * (l - len(s)) for s in token_descr]
-        id_descr = [[self.token2id[u] for u in s] for s in token_descr]
-        return torch.tensor(id_descr, device=self.device)
-
-    # Make a list of strings from a tensor
-    def detensorize(self, x):
-        return [" ".join([self.id2token[t.item()] for t in r]) for r in x]
-
-    # trim all the tensors in the tuple z to remove as much token from
-    # left and right in the first tensor. If z is a tuple, all its
-    # elements are trimed according to the triming for the first
-    def trim(self, z, token="<nul>"):
-        n = self.token2id[token]
-        if type(z) == tuple:
-            x = z[0]
-            i = (1 - (F.pad(x, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
-            a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
-            return tuple([t[:, a:b] for t in z])
-        else:
-            i = (1 - (F.pad(z, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
-            a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
-            return z[:, a:b]
-
-    ######################
-    # Not the cleanest part of the code
-
-    # Extract the last image of each sequence, from the last <img>
-    # included, and set to <nul> all the tokens from the beginning of
-    # that image to the end
-    def excise_last_image(self, input):
-        t_img, t_nul = self.token2id["<img>"], self.token2id["<nul>"]
-        nb_img_tokens = self.height * self.width + 1
-
-        input = input.clone()
-        t = (input == t_img).long()
-        tail_masks = (t.cumsum(dim=1) == t.sum(dim=1, keepdim=True)).long()
-        i = (t * tail_masks).nonzero(as_tuple=True)
-        j = (
-            i[0][:, None],
-            i[1][:, None] + torch.arange(nb_img_tokens, device=input.device)[None, :],
-        )
-        images = self.trim(input[j])
-        input[j] = t_nul
-        loss_masks = 1 - tail_masks
-        input, loss_masks = self.trim((input, loss_masks))
-        return input, loss_masks, images
-
-    def add_true_image(self, input, images, loss_masks):
-        t_nul = self.token2id["<nul>"]
-        nb_img_tokens = self.height * self.width + 1
-        input = F.pad(input, (0, nb_img_tokens), value=t_nul)
-        loss_masks = F.pad(loss_masks, (0, nb_img_tokens), value=0)
-        t = (input == t_nul).long()
-        i = (t.cumsum(dim=1) == 1).nonzero(as_tuple=True)
-        j = (
-            i[0][:, None],
-            i[1][:, None] + torch.arange(nb_img_tokens, device=input.device)[None, :],
-        )
-        input[j] = images
-        loss_masks[j] = 1
-        input, loss_masks = self.trim((input, loss_masks))
-        return input, loss_masks
-
-    def add_generated_image(self, input, loss_masks, model):
-        t_img, t_nul = self.token2id["<img>"], self.token2id["<nul>"]
-        nb_img_tokens = self.height * self.width + 1
-
-        input = F.pad(input, (0, nb_img_tokens), value=t_nul)
-        loss_masks = F.pad(loss_masks, (0, nb_img_tokens), value=0)
-        t = (input == t_nul).long()
-        i = (t.cumsum(dim=1) == 1).nonzero(as_tuple=True)
-        input[i] = t_img
-
-        j = (
-            i[0][:, None],
-            i[1][:, None]
-            + 1
-            + torch.arange(nb_img_tokens - 1, device=input.device)[None, :],
-        )
-        ar_masks = input.new_zeros(input.size(), dtype=torch.int64)
-        ar_masks[j] = 1
-        forbidden_tokens = (
-            torch.arange(self.vocabulary_size(), device=input.device) == t_nul
-        )
-        with torch.autograd.no_grad():
-            t = model.training
-            model.eval()
-            masked_inplace_autoregression(
-                model,
-                self.batch_size,
-                input,
-                ar_masks,
-                forbidden_tokens,
-                device=self.device,
-            )
-            model.train(t)
+    log_string(
+        f"data_check {nb_in_train*100/nb_test:.02f}% ({nb_in_train}/{nb_test}) of test samples are in the train set"
+    )
 
-        input, loss_masks = self.trim((input, loss_masks))
+    assert (
+        nb_in_train <= args.max_percents_of_test_in_train * nb_test / 100
+    ), f"More than {args.max_percents_of_test_in_train}% of test samples are in the train set"
 
-        return input, loss_masks
+##############################
 
-    ######################
 
-    def __init__(
-        self,
-        nb_train_samples,
-        nb_test_samples,
-        batch_size,
-        height,
-        width,
-        nb_colors=5,
-        device=torch.device("cpu"),
-        pruner_train=None,
-        pruner_eval=None,
-    ):
-        def generate_descr(nb, cache_suffix, pruner):
-            return picoclvr.generate(
-                nb,
-                height=self.height,
-                width=self.width,
-                nb_colors=nb_colors,
-                pruner=pruner,
-            )
+def one_epoch(model, quiz_machine):
+    optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
 
-        self.height = height
-        self.width = width
-        self.batch_size = batch_size
-        self.device = device
-        self.pruner_train = pruner_train
-        self.pruner_eval = pruner_eval
-
-        param = {
-            "nb_train_samples": nb_train_samples,
-            "nb_test_samples": nb_test_samples,
-            "height": height,
-            "width": width,
-            "nb_colors": nb_colors,
-            "batch_size": batch_size,
-            "rng_state": list(torch.get_rng_state()),
-        }
-
-        log_string(
-            f"generating {nb_train_samples+nb_test_samples} samples (can take some time)"
-        )
-        self.train_descr = generate_descr(
-            nb_train_samples, "train", pruner=self.pruner_train
-        )
-        self.test_descr = generate_descr(nb_test_samples, "test", pruner=None)
-
-        # Build the tokenizer
-        tokens = {"<nul>", "<img>"}
-        for d in [self.train_descr, self.test_descr]:
-            for s in d:
-                for t in s.strip().split(" "):
-                    tokens.add(t)
-        # make this set a sorted list to get the same tensors given
-        # the same descr
-        tokens = list(tokens)
-        tokens.sort()
-        self.token2id = dict([(t, n) for n, t in enumerate(tokens)])
-        self.id2token = dict([(n, t) for n, t in enumerate(tokens)])
-
-        # Tokenize the train and test sets
-        self.train_input = self.tensorize(self.train_descr)
-        self.test_input = self.tensorize(self.test_descr)
-
-    def batches(self, split="train"):
-        assert split in {"train", "test"}
-        input = self.train_input if split == "train" else self.test_input
-        for batch in tqdm.tqdm(
-            input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
-        ):
-            yield self.trim(batch)
+    model.train()
 
-    def vocabulary_size(self):
-        return len(self.token2id)
+    nb_train_samples, acc_train_loss = 0, 0.0
 
-    def compute_missing_properties(self, n_epoch, model, pruner=None):
-        acc_nb_requested_properties = []
-        acc_nb_missing_properties = []
-        acc_nb_results = 0
+    for input in quiz_machine.batches(split="train"):
+        input = input.to(device)
 
-        for input in tqdm.tqdm(
-            self.test_input.split(self.batch_size),
-            dynamic_ncols=True,
-            desc=f"test-properties",
-        ):
-            tape, loss_masks, _ = self.excise_last_image(input)
-            tape, loss_masks = self.add_generated_image(tape, loss_masks, model)
-            result_descr = self.detensorize(tape)
-            np = picoclvr.nb_properties(
-                result_descr,
-                height=self.height,
-                width=self.width,
-                pruner=pruner,
-            )
-            nb_requested_properties, _, nb_missing_properties = zip(*np)
-            acc_nb_requested_properties += nb_requested_properties
-            acc_nb_missing_properties += nb_missing_properties
-            acc_nb_results += len(result_descr)
-
-        nb_requested_properties = sum(acc_nb_requested_properties)
-        nb_missing_properties = sum(acc_nb_missing_properties)
-
-        prefix = "" if pruner is None else "pruned_"
-        log_string(f"nb_{prefix}samples {n_epoch} {acc_nb_results}")
-        log_string(
-            f"property_{prefix}nb {n_epoch} requested {sum(acc_nb_requested_properties)} missing {sum(acc_nb_missing_properties)}"
-        )
-        log_string(
-            f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
-        )
+        if nb_train_samples % args.batch_size == 0:
+            optimizer.zero_grad()
 
-    ######################################################################
+        output = model(mygpt.BracketedSequence(input)).x
+        loss = F.cross_entropy(output.transpose(1, 2), input)
+        acc_train_loss += loss.item() * input.size(0)
 
-    def produce_results(self, n_epoch, model):
-        self.compute_missing_properties(n_epoch, model)
+        nb_train_samples += input.size(0)
 
-        if self.pruner_eval is not None:
-            self.compute_missing_properties(n_epoch, model, self.pruner_eval)
+        loss.backward()
 
-        nb_tokens_to_generate = self.height * self.width + 3
-        result_descr = []
-        nb_per_primer = 8
-        primer = []
+        if nb_train_samples % args.batch_size == 0:
+            optimizer.step()
 
-        for primer_descr in [
-            "red above green <sep> green top <sep> blue right of red",
-            "there is red <sep> there is yellow <sep> there is blue",
-            "red below yellow <sep> yellow below green <sep> green below blue <sep> red right <sep> yellow left <sep> green right <sep> blue left",
-            "green bottom <sep> yellow bottom <sep> green left of blue <sep> yellow right of blue <sep> blue top",
-        ]:
-            primer += [primer_descr] * nb_per_primer
+    train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
 
-        tape = self.tensorize(primer)
-        loss_masks = 1 - (tape == self.token2id["<nul>"]).long()
-        tape, loss_masks = self.add_generated_image(tape, loss_masks, model)
-        result_descr = self.detensorize(tape)
+    log_string(f"train_perplexity {n_epoch} {train_perplexity}")
 
-        np = picoclvr.nb_properties(result_descr, height=self.height, width=self.width)
 
-        acc_nb_requested_properties, _, acc_nb_missing_properties = zip(*np)
-        acc_nb_results = len(result_descr)
+######################################################################
 
-        nb_requested_properties = sum(acc_nb_requested_properties)
-        nb_missing_properties = sum(acc_nb_missing_properties)
 
-        prefix = "demo_"
-        log_string(f"nb_{prefix}samples {n_epoch} {acc_nb_results}")
-        log_string(
-            f"property_{prefix}nb {n_epoch} requested {sum(acc_nb_requested_properties)} missing {sum(acc_nb_missing_properties)}"
-        )
-        log_string(
-            f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
-        )
+def run_tests(model, quiz_machine, deterministic_synthesis):
+    with torch.autograd.no_grad():
+        model.eval()
 
-        img = picoclvr.descr2img(result_descr, height=self.height, width=self.width)
-
-        if img.dim() == 5:
-            if img.size(1) == 1:
-                img = F.pad(img.squeeze(1), pad=(1, 1, 1, 1), value=64)
-            else:
-                img = torch.cat(
-                    [
-                        torchvision.utils.make_grid(x, padding=1, pad_value=64)[None]
-                        for x in img
-                    ],
-                    0,
-                )
+        nb_test_samples, acc_test_loss = 0, 0.0
+        nb_samples_accumulated = 0
 
-        image_name = os.path.join(args.result_dir, f"picoclvr_result_{n_epoch:04d}.png")
-        torchvision.utils.save_image(
-            img / 255.0, image_name, nrow=nb_per_primer, padding=1, pad_value=1.0
-        )
-        log_string(f"wrote {image_name}")
+        for input in quiz_machine.batches(split="test"):
+            input = input.to(device)
 
+            bs = model(mygpt.BracketedSequence(input))
+            output = bs.x
 
-######################################################################
+            loss = F.cross_entropy(output.transpose(1, 2), input)
 
+            acc_test_loss += loss.item() * input.size(0)
 
-class TaskMNIST(Task):
-    def __init__(self, batch_size, device=torch.device("cpu")):
-        self.device = device
-        self.batch_size = batch_size
+            nb_test_samples += input.size(0)
 
-    def batches(self, split="train"):
-        assert split in {"train", "test"}
-        data_set = torchvision.datasets.MNIST(
-            root="./data", train=(split == "train"), download=True
-        )
-        data_input = data_set.data.view(-1, 28 * 28).long()
-        if args.nb_train_samples is not None:
-            data_input = data_input[: args.nb_train_samples]
-        for batch in tqdm.tqdm(
-            data_input.split(self.batch_size), desc=f"epoch-{split}"
-        ):
-            yield batch
+        test_perplexity = math.exp(min(100, acc_test_loss / nb_test_samples))
 
-    def vocabulary_size(self):
-        return 256
+        log_string(f"test_perplexity {n_epoch} {test_perplexity}")
 
-    def produce_results(self, n_epoch, model):
-        results = torch.empty(64, 28 * 28, device=self.device, dtype=torch.int64)
-        ar_mask = torch.full_like(results, 1)
-        masked_inplace_autoregression(
-            model, self.batch_size, results, ar_mask, device=self.device
-        )
-        image_name = os.path.join(args.result_dir, f"result_mnist_{n_epoch:04d}.png")
-        torchvision.utils.save_image(
-            1 - results.reshape(-1, 1, 28, 28) / 255.0,
-            image_name,
-            nrow=16,
-            pad_value=0.8,
+        model.main_test_accuracy = quiz_machine.produce_results(
+            n_epoch=n_epoch,
+            model=model,
+            result_dir=args.result_dir,
+            deterministic_synthesis=deterministic_synthesis,
         )
-        log_string(f"wrote {image_name}")
 
 
 ######################################################################
 
-import maze
 
+def standard_validity(logproba):
+    l = logproba.sort(dim=-1).values
+    return logical_and(l[0] < math.log(0.5), l[1] > math.log(0.95))
 
-class TaskMaze(Task):
-    def map2seq(self, *m):
-        return torch.cat([x.flatten(1) for x in m], 1)
 
-    def seq2map(self, s):
-        s = s.reshape(s.size(0), -1, self.height, self.width)
-        return (s[:, k] for k in range(s.size(1)))
+def valid_c_quizzes(recorded, criteria):
+    result = [q[criteria(lp)] for q, lp in recorded]
+    return torch.cat(result, dim=0) if len(result) > 0 else torch.tensor([])
 
-    def __init__(
-        self,
-        nb_train_samples,
-        nb_test_samples,
-        batch_size,
-        height,
-        width,
-        nb_walls,
-        device=torch.device("cpu"),
-    ):
-        self.batch_size = batch_size
-        self.height = height
-        self.width = width
-        self.device = device
-
-        train_mazes, train_paths, _ = maze.create_maze_data(
-            nb_train_samples,
-            height=height,
-            width=width,
-            nb_walls=nb_walls,
-            progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
-        )
-        self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
-
-        test_mazes, test_paths, _ = maze.create_maze_data(
-            nb_test_samples,
-            height=height,
-            width=width,
-            nb_walls=nb_walls,
-            progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
-        )
-        self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
-
-        self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
-
-    def batches(self, split="train", nb_to_use=-1, desc=None):
-        assert split in {"train", "test"}
-        input = self.train_input if split == "train" else self.test_input
-        if nb_to_use > 0:
-            input = input[:nb_to_use]
-        if desc is None:
-            desc = f"epoch-{split}"
-        for batch in tqdm.tqdm(
-            input.split(self.batch_size), dynamic_ncols=True, desc=desc
+
+######################################################################
+
+
+def create_c_quizzes(
+    models,
+    quiz_machine,
+    nb_for_train=1000,
+    nb_for_test=100,
+):
+    quizzes_and_logproba_records = []
+
+    nb_to_create = nb_for_train + nb_for_test
+
+    # ------------------------------------------------------------
+
+    file_name = os.path.join(args.result_dir, f"culture_c_quiz_{n_epoch:04d}_logp.dat")
+
+    with open(file_name, "w") as logp_file:
+        while (
+            valid_c_quizzes(quizzes_and_logproba_records, standard_validity).size(0)
+            < nb_to_create
         ):
-            yield batch
-
-    def vocabulary_size(self):
-        return self.nb_codes
-
-    def compute_error(self, model, split="train", nb_to_use=-1):
-        nb_total, nb_correct = 0, 0
-        for input in task.batches(split, nb_to_use):
-            result = input.clone()
-            ar_mask = result.new_zeros(result.size())
-            ar_mask[:, self.height * self.width :] = 1
-            result *= 1 - ar_mask
-            masked_inplace_autoregression(
-                model, self.batch_size, result, ar_mask, device=self.device
+            # Select a model at random to generate the new quizzes
+
+            model_for_generation = models[torch.randint(len(models), (1,))]
+
+            c_quizzes = quiz_machine.generate_quizzes(
+                nb_to_create,
+                model_for_generation=model_for_generation,
+                temperature=args.generation_temperature,
             )
-            mazes, paths = self.seq2map(result)
-            nb_correct += maze.path_correctness(mazes, paths).long().sum()
-            nb_total += mazes.size(0)
 
-        return nb_total, nb_correct
+            c_quizzes = c_quizzes[quiz_machine.non_trivial(c_quizzes)]
 
-    def produce_results(self, n_epoch, model):
-        with torch.autograd.no_grad():
-            t = model.training
-            model.eval()
+            if c_quizzes.size(0) > 0:
+                logproba = c_quizzes.new(c_quizzes.size(0), len(models))
+                for q, l in zip(
+                    c_quizzes.split(args.batch_size), logits.split(args.batch_size)
+                ):
+                    for model in models:
+                        l[model.id] = F.cross_entropy(model(q))
 
-            train_nb_total, train_nb_correct = self.compute_error(
-                model, "train", nb_to_use=1000
-            )
-            log_string(
-                f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
-            )
+                for l in logproba:
+                    s = " ".join([str(x.item()) for x in l])
+                    logp_file.write(s + "\n")
+
+                quizzes_and_logproba_records.append((c_quizzes, logproba))
+
+            nb_validated = valid_c_quizzes(
+                quizzes_and_logproba_records, standard_validity
+            ).size(0)
 
-            test_nb_total, test_nb_correct = self.compute_error(
-                model, "test", nb_to_use=1000
-            )
             log_string(
-                f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+                f"keep c_quizzes model {model_for_generation.id} nb_accumulated {nb_validated} / {nb_to_create}"
             )
 
-            input = self.test_input[:48]
-            result = input.clone()
-            ar_mask = result.new_zeros(result.size())
-            ar_mask[:, self.height * self.width :] = 1
-            result *= 1 - ar_mask
-            masked_inplace_autoregression(
-                model, self.batch_size, result, ar_mask, device=self.device
-            )
+    # store the new c_quizzes which have been validated
 
-            mazes, paths = self.seq2map(input)
-            _, predicted_paths = self.seq2map(result)
+    new_c_quizzes = valid_c_quizzes(quizzes_and_logproba_records, standard_validity)
 
-            filename = os.path.join(args.result_dir, f"result_{n_epoch:04d}.png")
-            maze.save_image(
-                filename,
-                mazes=mazes,
-                target_paths=paths,
-                predicted_paths=predicted_paths,
-                path_correct=maze.path_correctness(mazes, predicted_paths),
-            )
-            log_string(f"wrote {filename}")
+    quiz_machine.reverse_random_half_in_place(new_c_quizzes)
 
-            model.train(t)
+    quiz_machine.store_c_quizzes(new_c_quizzes[:nb_for_train], for_train=True)
+    quiz_machine.store_c_quizzes(new_c_quizzes[nb_for_train:], for_train=False)
 
+    # save a bunch of images to investigate what quizzes with a
+    # certain nb of correct predictions look like
 
-######################################################################
+    q = new_c_quizzes[:72]
 
-class TaskSnake(Task):
-    def __init__(
-        self,
-        nb_train_samples,
-        nb_test_samples,
-        batch_size,
-        height,
-        width,
-        nb_walls,
-        device=torch.device("cpu"),
-    ):
-        self.batch_size = batch_size
-        self.height = height
-        self.width = width
-        self.device = device
-
-        # self.train_input = 
-        # self.test_input = 
-
-        self.nb_codes = max(self.train_input.max(), self.train_input.max()) + 1
-
-    def batches(self, split="train", nb_to_use=-1, desc=None):
-        assert split in {"train", "test"}
-        input = self.train_input if split == "train" else self.test_input
-        if nb_to_use > 0:
-            input = input[:nb_to_use]
-        if desc is None:
-            desc = f"epoch-{split}"
-        for batch in tqdm.tqdm(
-            input.split(self.batch_size), dynamic_ncols=True, desc=desc
-        ):
-            yield batch
+    if q.size(0) > 0:
+        quiz_machine.save_quizzes(args.result_dir, f"culture_c_quiz_{n_epoch:04d}", q)
 
 
 ######################################################################
 
 
-def picoclvr_pruner_horizontal_green(p):
-    return not ("green" in p and ("left" in p or "right" in p))
+def create_c_quizzes_(
+    models,
+    quiz_machine,
+    nb_for_train=1000,
+    nb_for_test=100,
+):
+    quizzes_and_nb_correct_records = []
 
+    nb_to_create = nb_for_train + nb_for_test
 
-picoclvr_pruner_train = (
-    picoclvr_pruner_horizontal_green
-    if args.picocvlr_prune_properties in {"train+eval"}
-    else None
-)
+    # ------------------------------------------------------------
 
-picoclvr_pruner_eval = (
-    (lambda p: not picoclvr_pruner_horizontal_green(p))
-    if args.picocvlr_prune_properties in {"train+eval", "eval"}
-    else None
-)
+    standard_validity = lambda nb_correct: torch.logical_and(
+        nb_correct >= args.min_to_validate, nb_correct <= args.max_to_validate
+    )
 
-######################################################################
+    file_name = os.path.join(args.result_dir, f"culture_c_quiz_{n_epoch:04d}_logp.dat")
 
-if args.task == "picoclvr":
-    task = TaskPicoCLVR(
-        nb_train_samples=args.nb_train_samples,
-        nb_test_samples=args.nb_test_samples,
-        batch_size=args.batch_size,
-        height=args.picoclvr_height,
-        width=args.picoclvr_width,
-        nb_colors=args.picoclvr_nb_colors,
-        device=device,
-        pruner_train=picoclvr_pruner_train,
-        pruner_eval=picoclvr_pruner_eval,
-    )
+    with open(file_name, "w") as logp_file:
+        while (
+            valid_c_quizzes(quizzes_and_nb_correct_records, standard_validity).size(0)
+            < nb_to_create
+        ):
+            # Select a model at random to generate the new quizzes
 
-elif args.task == "mnist":
-    task = TaskMNIST(
-        batch_size=args.batch_size,
-        device=device,
-    )
+            model_for_generation = models[torch.randint(len(models), (1,))]
 
-elif args.task == "maze":
-    task = TaskMaze(
-        nb_train_samples=args.nb_train_samples,
-        nb_test_samples=args.nb_test_samples,
-        batch_size=args.batch_size,
-        height=args.maze_height,
-        width=args.maze_width,
-        nb_walls=args.maze_nb_walls,
-        device=device,
-    )
+            c_quizzes = quiz_machine.generate_quizzes(
+                nb_to_create,
+                model_for_generation=model_for_generation,
+                temperature=args.generation_temperature,
+            )
 
-else:
-    raise ValueError(f"Unknown task {args.task}")
+            # if args.prediction_correctness:
 
-######################################################################
+            # else:
+            # logproba = quiz_machine.new(quiz_machine.size(0), len(models))
+            # for q,l in zip(quizzes.split(args.batch_size), logits.split(args.batch_size)):
+            # for model in models:
+            # l[...] = F.cross_entropy(model(q))
 
-log_string(f"device {device}")
+            c_quizzes = c_quizzes[quiz_machine.non_trivial(c_quizzes)]
 
-vocabulary_size = task.vocabulary_size()
+            if c_quizzes.size(0) > 0:
+                nb_correct, seq_logproba = quiz_machine.compute_correctness(
+                    c_quizzes,
+                    models,
+                    bidirectional_validation=args.bidirectional_validation,
+                    deterministic_validation=args.deterministic_validation,
+                )
 
-log_string(f"vocabulary_size {vocabulary_size}")
+                for n, l in zip(nb_correct, seq_logproba):
+                    s = " ".join([str(x.item()) for x in l])
+                    logp_file.write(f"{n} {s}\n")
 
-##############################
+                if args.dirty_debug:
+                    nb_correct = torch.randint(
+                        len(models) + 1, nb_correct.size(), device=c_quizzes.device
+                    )
 
-model = mygpt.MyGPT(
-    vocabulary_size=vocabulary_size,
-    dim_model=args.dim_model,
-    dim_keys=args.dim_keys,
-    dim_hidden=args.dim_hidden,
-    nb_heads=args.nb_heads,
-    nb_blocks=args.nb_blocks,
-    causal=True,
-    dropout=args.dropout,
-)
+                quizzes_and_nb_correct_records.append((c_quizzes, nb_correct))
 
-model.to(device)
+            nv = F.one_hot(nb_correct, num_classes=len(models) + 1).sum(0)
+            nv = " ".join([str(x.item()) for x in nv])
 
-nb_parameters = sum(p.numel() for p in model.parameters())
-log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
+            nb_validated = valid_c_quizzes(
+                quizzes_and_nb_correct_records, standard_validity
+            ).size(0)
 
-######################################################################
+            log_string(
+                f"keep c_quizzes model {model_for_generation.id} kept {nv} nb_accumulated {nb_validated} / {nb_to_create}"
+            )
 
-nb_epochs_finished = 0
+    # store the new c_quizzes which have been validated
 
-if args.no_checkpoint:
-    log_string(f"not trying to load checkpoint.")
+    new_c_quizzes = valid_c_quizzes(quizzes_and_nb_correct_records, standard_validity)
 
-else:
-    try:
-        checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
-        checkpoint = torch.load(checkpoint_name)
-        nb_epochs_finished = checkpoint["nb_epochs_finished"]
-        model.load_state_dict(checkpoint["model_state"])
-        torch.set_rng_state(checkpoint["rng_state"])
-        if torch.cuda.is_available():
-            torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
+    quiz_machine.reverse_random_half_in_place(new_c_quizzes)
+
+    quiz_machine.store_c_quizzes(new_c_quizzes[:nb_for_train], for_train=True)
+    quiz_machine.store_c_quizzes(new_c_quizzes[nb_for_train:], for_train=False)
+
+    # save a bunch of images to investigate what quizzes with a
+    # certain nb of correct predictions look like
+
+    for n in range(len(models) + 1):
+        s = (
+            "_validated"
+            if n >= args.min_to_validate and n <= args.max_to_validate
+            else ""
+        )
+
+        q = valid_c_quizzes(
+            quizzes_and_nb_correct_records, criteria=lambda nb_correct: nb_correct == n
+        )[:72]
 
-        log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
+        quiz_machine.reverse_random_half_in_place(q)
 
-    except FileNotFoundError:
-        log_string("starting from scratch.")
+        if q.size(0) > 0:
+            quiz_machine.save_quizzes(
+                args.result_dir, f"culture_c_quiz_{n_epoch:04d}_N{n}{s}", q
+            )
 
-    except:
-        log_string("error when loading the checkpoint.")
-        exit(1)
 
 ######################################################################
 
-nb_epochs = args.nb_epochs if args.nb_epochs > 0 else nb_epochs_default
+models = []
 
-token_count = 0
-for input in task.batches(split="train"):
-    token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
-token_probas = token_count / token_count.sum()
-entropy = -torch.xlogy(token_probas, token_probas).sum()
-train_set_perplexity = math.exp(entropy)
+for k in range(args.nb_gpts):
+    model = mygpt.MyGPT(
+        vocabulary_size=vocabulary_size,
+        dim_model=args.dim_model,
+        dim_keys=args.dim_keys,
+        dim_hidden=args.dim_hidden,
+        nb_heads=args.nb_heads,
+        nb_blocks=args.nb_blocks,
+        causal=True,
+        dropout=args.dropout,
+    ).to(device)
 
-##############################
+    model.main_test_accuracy = 0.0
+    model.id = k
 
-if args.learning_rate_schedule == "cos":
-    learning_rate_schedule = {}
-    for n_epoch in range(args.nb_epochs):
-        u = n_epoch / args.nb_epochs * math.pi
-        learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
-else:
-    u = {
-        int(k): float(v)
-        for k, v in [
-            tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
-        ]
-    }
-
-    learning_rate_schedule = {}
-    learning_rate = args.learning_rate
-    for n_epoch in range(args.nb_epochs):
-        if n_epoch in u:
-            learning_rate = u[n_epoch]
-        learning_rate_schedule[n_epoch] = learning_rate
-
-log_string(f"learning_rate_schedule {learning_rate_schedule}")
+    models.append(model)
 
-##############################
 
-nb_samples_seen = 0
+nb_parameters = sum(p.numel() for p in models[0].parameters())
+log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
 
-if nb_epochs_finished >= nb_epochs:
-    task.produce_results(nb_epochs_finished, model)
+######################################################################
 
-for n_epoch in range(nb_epochs_finished, nb_epochs):
-    learning_rate = learning_rate_schedule[n_epoch]
+nb_new_c_quizzes_for_train = args.nb_train_samples // 50
+nb_new_c_quizzes_for_test = args.nb_test_samples // 50
 
-    log_string(f"learning_rate {learning_rate}")
+log_string(
+    f"nb_new_c_quizzes_for_train {nb_new_c_quizzes_for_train} nb_new_c_quizzes_for_test {nb_new_c_quizzes_for_test}"
+)
 
-    if args.optim == "sgd":
-        optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
-    elif args.optim == "adam":
-        optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
-    elif args.optim == "adamw":
-        optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
-    else:
-        raise ValueError(f"Unknown optimizer {args.optim}.")
+######################################################################
 
-    model.train()
+if args.dirty_debug:
+    args.accuracy_to_make_c_quizzes = 0.0
+    args.nb_gpts = 2
+    nb_new_c_quizzes_for_train = 100
+    nb_new_c_quizzes_for_test = 10
 
-    nb_train_samples, acc_train_loss = 0, 0.0
+######################################################################
 
-    for input in task.batches(split="train"):
-        input = input.to(device)
-        output = model(mygpt.BracketedSequence(input)).x
-        loss = F.cross_entropy(output.transpose(1, 2), input)
-        acc_train_loss += loss.item() * input.size(0)
-        nb_train_samples += input.size(0)
-        nb_samples_seen += input.size(0)
+for n_epoch in range(args.nb_epochs):
+    log_string(f"--- epoch {n_epoch} ----------------------------------------")
 
-        optimizer.zero_grad()
-        loss.backward()
-        optimizer.step()
+    cta = " ".join([f"{float(m.main_test_accuracy):.04f}" for m in models])
+    log_string(f"current_test_accuracies {cta}")
 
-    with torch.autograd.no_grad():
-        model.eval()
+    ##################################################
+    # Select, improve, and eval the worst model
 
-        nb_test_samples, acc_test_loss = 0, 0.0
+    weakest_model = min(models, key=lambda m: float(m.main_test_accuracy))
 
-        for input in task.batches(split="test"):
-            input = input.to(device)
+    log_string(
+        f"training model {weakest_model.id} main_test_accuracy {weakest_model.main_test_accuracy}"
+    )
 
-            # input, loss_masks, true_images = task.excise_last_image(input)
-            # input, loss_masks = task.add_true_image(input, true_images, loss_masks)
+    one_epoch(weakest_model, quiz_machine)
 
-            output = model(mygpt.BracketedSequence(input)).x
-            loss = F.cross_entropy(output.transpose(1, 2), input)
-            acc_test_loss += loss.item() * input.size(0)
-            nb_test_samples += input.size(0)
+    log_string(
+        f"train_set_composition w_quizzes {quiz_machine.nb_batch_w_quizzes} c_quizzes {quiz_machine.nb_batch_c_quizzes}"
+    )
 
-        train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
-        test_perplexity = math.exp(min(100, acc_test_loss / nb_test_samples))
+    run_tests(weakest_model, quiz_machine, deterministic_synthesis=False)
 
-        log_string(
-            f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
-        )
+    log_string(
+        f"test_set_composition w_quizzes {quiz_machine.nb_batch_w_quizzes} c_quizzes {quiz_machine.nb_batch_c_quizzes}"
+    )
 
-        task.produce_results(n_epoch, model)
+    ##################################################
+    # Replace a fraction of the w_quizzes with fresh ones
 
-    checkpoint = {
-        "nb_epochs_finished": n_epoch + 1,
-        "model_state": model.state_dict(),
-        "rng_state": torch.get_rng_state(),
-    }
+    quiz_machine.renew_w_quizzes(args.nb_train_samples // args.nb_gpts)
 
-    if torch.cuda.is_available():
-        checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
+    ##################################################
+    # If all the models are good enough, generate new quizzes and
+    # re-compute the test errors
+
+    if min([m.main_test_accuracy for m in models]) >= args.accuracy_to_make_c_quizzes:
+        create_c_quizzes(
+            models,
+            quiz_machine,
+            nb_for_train=nb_new_c_quizzes_for_train,
+            nb_for_test=nb_new_c_quizzes_for_test,
+        )
+
+        for model in models:
+            run_tests(model, quiz_machine, deterministic_synthesis=False)
 
-    checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
-    torch.save(checkpoint, checkpoint_name)
-    log_string(f"saved checkpoint {checkpoint_name}")
 
 ######################################################################