Update.
[picoclvr.git] / main.py
diff --git a/main.py b/main.py
index 14b1bc3..9dee679 100755 (executable)
--- a/main.py
+++ b/main.py
@@ -32,12 +32,15 @@ parser = argparse.ArgumentParser(
 )
 
 parser.add_argument(
-    "--task", type=str, default="picoclvr", help="picoclvr, mnist, maze, snake, stack"
+    "--task",
+    type=str,
+    default="picoclvr",
+    help="picoclvr, mnist, maze, snake, stack, expr",
 )
 
 parser.add_argument("--log_filename", type=str, default="train.log", help=" ")
 
-parser.add_argument("--result_dir", type=str, default="results_default")
+parser.add_argument("--result_dir", type=str, default=None)
 
 parser.add_argument("--seed", type=int, default=0)
 
@@ -45,9 +48,9 @@ parser.add_argument("--nb_epochs", type=int, default=None)
 
 parser.add_argument("--batch_size", type=int, default=None)
 
-parser.add_argument("--nb_train_samples", type=int, default=250000)
+parser.add_argument("--nb_train_samples", type=int, default=None)
 
-parser.add_argument("--nb_test_samples", type=int, default=10000)
+parser.add_argument("--nb_test_samples", type=int, default=None)
 
 parser.add_argument("--optim", type=str, default="adam")
 
@@ -113,7 +116,16 @@ parser.add_argument("--stack_nb_steps", type=int, default=100)
 
 parser.add_argument("--stack_nb_stacks", type=int, default=1)
 
-parser.add_argument("--stack_nb_values", type=int, default=10)
+parser.add_argument("--stack_nb_digits", type=int, default=3)
+
+parser.add_argument("--stack_fraction_values_for_train", type=float, default=None)
+
+##############################
+# Expr options
+
+parser.add_argument("--expr_nb_variables", type=int, default=5)
+
+parser.add_argument("--expr_sequence_length", type=int, default=30)
 
 ######################################################################
 
@@ -121,22 +133,8 @@ args = parser.parse_args()
 
 assert args.picocvlr_prune_properties in {"none", "train+eval", "eval"}
 
-try:
-    os.mkdir(args.result_dir)
-except FileExistsError:
-    if not args.overwrite_results:
-        print(f"result directory {args.result_dir} already exists")
-        exit(1)
-
-log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
-
-if args.seed >= 0:
-    # torch.backends.cudnn.deterministic = True
-    # torch.backends.cudnn.benchmark = False
-    # torch.use_deterministic_algorithms(True)
-    torch.manual_seed(args.seed)
-    if torch.cuda.is_available():
-        torch.cuda.manual_seed_all(args.seed)
+if args.result_dir is None:
+    args.result_dir = f"results_{args.task}"
 
 ######################################################################
 
@@ -171,6 +169,12 @@ default_args = {
         "nb_train_samples": 100000,
         "nb_test_samples": 1000,
     },
+    "expr": {
+        "nb_epochs": 50,
+        "batch_size": 25,
+        "nb_train_samples": 250000,
+        "nb_test_samples": 10000,
+    },
 }
 
 if args.task in default_args:
@@ -180,6 +184,25 @@ if args.task in default_args:
 
 ######################################################################
 
+try:
+    os.mkdir(args.result_dir)
+except FileExistsError:
+    if not args.overwrite_results:
+        print(f"result directory {args.result_dir} already exists")
+        exit(1)
+
+log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
+
+if args.seed >= 0:
+    # torch.backends.cudnn.deterministic = True
+    # torch.backends.cudnn.benchmark = False
+    # torch.use_deterministic_algorithms(True)
+    torch.manual_seed(args.seed)
+    if torch.cuda.is_available():
+        torch.cuda.manual_seed_all(args.seed)
+
+######################################################################
+
 
 def log_string(s):
     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
@@ -210,16 +233,16 @@ def masked_inplace_autoregression(
     progress_bar_desc="autoregression",
     device=torch.device("cpu"),
 ):
-    # p = logits.softmax(1)
-    # entropy[:,s]= p.xlogy(p).sum(1) / math.log(2)
     batches = zip(input.split(batch_size), ar_mask.split(batch_size))
+
     if progress_bar_desc is not None:
-        tqdm.tqdm(
+        batches = tqdm.tqdm(
             batches,
             dynamic_ncols=True,
             desc=progress_bar_desc,
             total=input.size(0) // batch_size,
         )
+
     for input, ar_mask in batches:
         i = (ar_mask.sum(0) > 0).nonzero()
         if i.min() > 0:
@@ -702,14 +725,14 @@ class TaskMaze(Task):
                 model, "train", nb_to_use=1000
             )
             log_string(
-                f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
+                f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
             )
 
             test_nb_total, test_nb_correct, count = self.compute_error(
                 model, "test", nb_to_use=1000
             )
             log_string(
-                f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+                f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
             )
 
             if count is not None:
@@ -855,7 +878,7 @@ class TaskSnake(Task):
             )
 
             log_string(
-                f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+                f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
             )
 
             model.train(t)
@@ -875,29 +898,47 @@ class TaskStack(Task):
         batch_size,
         nb_steps,
         nb_stacks,
-        nb_values,
+        nb_digits,
+        fraction_values_for_train=None,
         device=torch.device("cpu"),
     ):
         self.batch_size = batch_size
         self.nb_steps = nb_steps
         self.nb_stacks = nb_stacks
-        self.nb_values = nb_values
+        self.nb_digits = nb_digits
         self.device = device
 
+        if fraction_values_for_train is None:
+            values_for_train = None
+            values_for_test = None
+        else:
+            all = torch.randperm(10**nb_digits)
+            nb_for_train = int(all.size(0) * fraction_values_for_train)
+            values_for_train = all[:nb_for_train]
+            values_for_test = all[nb_for_train:]
+
         self.train_input, self.train_stack_counts = stack.generate_sequences(
-            nb_train_samples, nb_steps, nb_stacks, nb_values, self.device
+            nb_train_samples,
+            nb_steps,
+            nb_stacks,
+            nb_digits,
+            values_for_train,
+            self.device,
         )
 
         self.test_input, self.test_stack_counts = stack.generate_sequences(
-            nb_test_samples, nb_steps, nb_stacks, nb_values, self.device
+            nb_test_samples,
+            nb_steps,
+            nb_stacks,
+            nb_digits,
+            values_for_test,
+            self.device,
         )
 
-        mask = self.test_input.clone()
-        stack.remove_poped_values(mask,self.nb_stacks)
-        mask=(mask!=self.test_input)
-        counts = self.test_stack_counts.flatten()[mask.flatten()]
-        counts=F.one_hot(counts).sum(0)
-        log_string(f"stack_count {counts}")
+        i = torch.logical_and(self.test_input % 2 == 1, self.test_input < 2 * nb_stacks)
+        counts = self.test_stack_counts.flatten()[i.flatten()]
+        counts = F.one_hot(counts).sum(0)
+        log_string(f"test_pop_stack_counts {counts}")
 
         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
 
@@ -923,28 +964,221 @@ class TaskStack(Task):
 
             def compute_nb_correct(input):
                 result = input.clone()
-                stack.remove_poped_values(result,self.nb_stacks)
+                stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
                 ar_mask = (result != input).long()
-                result *= 1 - ar_mask
-
                 masked_inplace_autoregression(
                     model, self.batch_size, result, ar_mask, device=self.device
                 )
 
-                nb_total = ar_mask.sum()
+                errors = ((result != input).long() * ar_mask).reshape(
+                    -1, 1 + self.nb_digits
+                )
+                ar_mask = ar_mask.reshape(-1, 1 + self.nb_digits)
 
-                nb_correct = (
-                    (result == input).long() * ar_mask
-                ).sum()
+                nb_total = ar_mask.max(1).values.sum()
+                nb_correct = nb_total - errors.max(1).values.sum()
 
                 return nb_total, nb_correct
 
             test_nb_total, test_nb_correct = compute_nb_correct(self.test_input[:1000])
 
             log_string(
-                f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+                f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
             )
 
+            ##############################################################
+            # Log a few generated sequences
+            input = self.test_input[:10, : 12 * (1 + self.nb_digits)]
+            result = input.clone()
+            stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
+            ar_mask = (result != input).long()
+            for n in range(result.size(0)):
+                log_string(
+                    f"test_before {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
+                )
+            masked_inplace_autoregression(
+                model, self.batch_size, result, ar_mask, device=self.device
+            )
+            for n in range(result.size(0)):
+                log_string(
+                    f"test_after  {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
+                )
+            ##############################################################
+
+            model.train(t)
+
+
+######################################################################
+
+
+import expr
+
+
+class TaskExpr(Task):
+    def __init__(
+        self,
+        nb_train_samples,
+        nb_test_samples,
+        nb_variables,
+        sequence_length,
+        batch_size,
+        device=torch.device("cpu"),
+    ):
+        self.batch_size = batch_size
+        self.device = device
+
+        train_sequences = expr.generate_sequences(
+            nb_train_samples,
+            nb_variables=nb_variables,
+            length=sequence_length,
+            # length=2 * sequence_length,
+            # randomize_length=True,
+        )
+        test_sequences = expr.generate_sequences(
+            nb_test_samples,
+            nb_variables=nb_variables,
+            length=sequence_length,
+        )
+        self.char2id = dict(
+            [
+                (c, n)
+                for n, c in enumerate(
+                    set("#" + "".join(train_sequences + test_sequences))
+                )
+            ]
+        )
+        self.id2char = dict([(n, c) for c, n in self.char2id.items()])
+
+        self.filler, self.space = self.char2id["#"], self.char2id[" "]
+
+        len_max = max([len(x) for x in train_sequences])
+        self.train_input = torch.cat(
+            [
+                torch.tensor(
+                    [
+                        [self.char2id[c] for c in s + "#" * (len_max - len(s))]
+                        for s in train_sequences
+                    ]
+                )
+            ],
+            0,
+        ).to(device)
+
+        len_max = max([len(x) for x in test_sequences])
+        self.test_input = torch.cat(
+            [
+                torch.tensor(
+                    [
+                        [self.char2id[c] for c in s + "#" * (len_max - len(s))]
+                        for s in test_sequences
+                    ]
+                )
+            ],
+            0,
+        ).to(device)
+
+        self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
+
+    def batches(self, split="train", nb_to_use=-1, desc=None):
+        assert split in {"train", "test"}
+        input = self.train_input if split == "train" else self.test_input
+        if nb_to_use > 0:
+            input = input[:nb_to_use]
+        if desc is None:
+            desc = f"epoch-{split}"
+        for batch in tqdm.tqdm(
+            input.split(self.batch_size), dynamic_ncols=True, desc=desc
+        ):
+            if split == "train":
+                last = (batch != self.filler).max(0).values.nonzero().max() + 1
+                batch = batch[:, :last]
+            yield batch
+
+    def vocabulary_size(self):
+        return self.nb_codes
+
+    def seq2str(self, s):
+        return "".join([self.id2char[k.item()] for k in s])
+
+    def produce_results(self, n_epoch, model):
+        with torch.autograd.no_grad():
+            t = model.training
+            model.eval()
+
+            def compute_nb_correct(input):
+                result = input.clone()
+                ar_mask = (result == self.space).long().cumsum(dim=1).clamp(max=1)
+                result = (1 - ar_mask) * result + ar_mask * self.filler
+                masked_inplace_autoregression(
+                    model, self.batch_size, result, ar_mask, device=self.device
+                )
+
+                nb_total = input.size(0)
+                nb_correct = (input == result).long().min(1).values.sum()
+
+                #######################################################################
+                # Comput predicted vs. true variable values
+
+                nb_delta = torch.zeros(5, dtype=torch.int64)
+                nb_missed = 0
+
+                values_input = expr.extract_results([self.seq2str(s) for s in input])
+                values_result = expr.extract_results([self.seq2str(s) for s in result])
+
+                for i, r in zip(values_input, values_result):
+                    for n, vi in i.items():
+                        vr = r.get(n)
+                        if vr is None or vr < 0:
+                            nb_missed += 1
+                        else:
+                            d = abs(vr - vi)
+                            if d >= nb_delta.size(0):
+                                nb_missed += 1
+                            else:
+                                nb_delta[d] += 1
+
+                ######################################################################
+
+                return nb_total, nb_correct, nb_delta, nb_missed
+
+            (
+                test_nb_total,
+                test_nb_correct,
+                test_nb_delta,
+                test_nb_missed,
+            ) = compute_nb_correct(self.test_input[:1000])
+
+            log_string(
+                f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+            )
+
+            nb_total = test_nb_delta.sum() + test_nb_missed
+            for d in range(test_nb_delta.size(0)):
+                log_string(
+                    f"error_value {n_epoch} delta {d} {test_nb_delta[d]} {test_nb_delta[d]*100/nb_total:.02f}%"
+                )
+            log_string(
+                f"error_value {n_epoch} missed {test_nb_missed} {test_nb_missed*100/nb_total:.02f}%"
+            )
+
+            ##############################################################
+            # Log a few generated sequences
+            input = self.test_input[:10]
+            result = input.clone()
+            ar_mask = (result == self.space).long().cumsum(dim=1).clamp(max=1)
+            result = (1 - ar_mask) * result + ar_mask * self.filler
+            for n in range(result.size(0)):
+                log_string(f"test_before {self.seq2str(result[n])}")
+            masked_inplace_autoregression(
+                model, self.batch_size, result, ar_mask, device=self.device
+            )
+            correct = (1 - ar_mask) * self.space + ar_mask * input
+            for n in range(result.size(0)):
+                comment = "GOOD" if (result[n] - input[n]).abs().max() == 0 else ""
+                log_string(f"test_after  {self.seq2str(result[n])} {comment}")
+                log_string(f"correct     {self.seq2str(correct[n])}")
+            ##############################################################
+
             model.train(t)
 
 
@@ -1017,9 +1251,20 @@ elif args.task == "stack":
         nb_train_samples=args.nb_train_samples,
         nb_test_samples=args.nb_test_samples,
         batch_size=args.batch_size,
-        nb_steps = args.stack_nb_steps,
-        nb_stacks = args.stack_nb_stacks,
-        nb_values = args.stack_nb_values,
+        nb_steps=args.stack_nb_steps,
+        nb_stacks=args.stack_nb_stacks,
+        nb_digits=args.stack_nb_digits,
+        fraction_values_for_train=args.stack_fraction_values_for_train,
+        device=device,
+    )
+
+elif args.task == "expr":
+    task = TaskExpr(
+        nb_train_samples=args.nb_train_samples,
+        nb_test_samples=args.nb_test_samples,
+        nb_variables=args.expr_nb_variables,
+        sequence_length=args.expr_sequence_length,
+        batch_size=args.batch_size,
         device=device,
     )