Merge branch 'dev'
[culture.git] / main.py
diff --git a/main.py b/main.py
index 7f9d521..40772c2 100755 (executable)
--- a/main.py
+++ b/main.py
@@ -3,6 +3,9 @@
 # Any copyright is dedicated to the Public Domain.
 # https://creativecommons.org/publicdomain/zero/1.0/
 
+# > A > f(A) > B ; > f(B)
+# < f(B) ; < B < f(A) < A
+
 # Written by Francois Fleuret <francois@fleuret.org>
 
 import math, sys, argparse, time, tqdm, os, datetime, warnings
@@ -12,41 +15,35 @@ from torch import nn
 from torch.nn import functional as F
 
 import ffutils
-import mygpt
-import sky, quizz_machine
-
-# world quizzes vs. culture quizzes
 
-######################################################################
+import mygpt
+import sky, grids, quiz_machine
 
-accuracy_to_make_c_quizzes = 0.975
-nb_new_c_quizzes_for_train = 1000
-nb_new_c_quizzes_for_test = 100
+from quiz_machine import one_batch_masked_inplace_autoregression
 
-######################################################################
+import threading, subprocess
 
-if torch.cuda.is_available():
-    device = torch.device("cuda")
-    torch.backends.cuda.matmul.allow_tf32 = True
-else:
-    device = torch.device("cpu")
+import torch.multiprocessing as mp
 
 ######################################################################
 
 parser = argparse.ArgumentParser(
-    description="An implementation of GPT with cache.",
     formatter_class=argparse.ArgumentDefaultsHelpFormatter,
 )
 
-parser.add_argument("--log_filename", type=str, default="train.log", help=" ")
+parser.add_argument("--log_filename", type=str, default="train.log")
 
 parser.add_argument("--result_dir", type=str, default=None)
 
 parser.add_argument("--seed", type=int, default=0)
 
-parser.add_argument("--max_percents_of_test_in_train", type=int, default=1)
+parser.add_argument("--resume", action="store_true", default=False)
+
+parser.add_argument("--max_percents_of_test_in_train", type=int, default=-1)
 
-########################################
+parser.add_argument("--log_command", type=str, default=None)
+
+# ----------------------------------
 
 parser.add_argument("--nb_epochs", type=int, default=10000)
 
@@ -54,14 +51,21 @@ parser.add_argument("--batch_size", type=int, default=None)
 
 parser.add_argument("--physical_batch_size", type=int, default=None)
 
+parser.add_argument("--inference_batch_size", type=int, default=None)
+
 parser.add_argument("--nb_train_samples", type=int, default=None)
 
 parser.add_argument("--nb_test_samples", type=int, default=None)
 
-parser.add_argument("--learning_rate", type=float, default=1e-4)
+parser.add_argument("--nb_new_c_quizzes_for_train", type=int, default=None)
+
+parser.add_argument("--nb_new_c_quizzes_for_test", type=int, default=None)
 
-########################################
+parser.add_argument("--learning_rate", type=float, default=5e-4)
 
+parser.add_argument("--schedule_free", action="store_true", default=False)
+
+# ----------------------------------
 parser.add_argument("--model", type=str, default=None)
 
 parser.add_argument("--dim_model", type=int, default=None)
@@ -76,14 +80,69 @@ parser.add_argument("--nb_blocks", type=int, default=None)
 
 parser.add_argument("--dropout", type=float, default=0.1)
 
-########################################
-
+# ----------------------------------
 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
 
+parser.add_argument("--problem", type=str, default="grids")
+
+parser.add_argument("--nb_threads", type=int, default=1)
+
+parser.add_argument("--gpus", type=str, default="all")
+
+# ----------------------------------
+
 parser.add_argument("--nb_gpts", type=int, default=5)
 
+parser.add_argument("--max_fail_to_validate", type=int, default=3)
+
+parser.add_argument("--accuracy_to_make_c_quizzes", type=float, default=0.95)
+
+parser.add_argument("--proba_understands", type=float, default=0.95)
+
+parser.add_argument("--proba_not_understands", type=float, default=0.1)
+
+parser.add_argument("--temperature_hot", type=float, default=1.5)
+
+parser.add_argument("--temperature_cold", type=float, default=1)
+
+parser.add_argument("--prompt_noise", type=float, default=0.05)
+
 parser.add_argument("--dirty_debug", action="store_true", default=False)
 
+parser.add_argument("--test", type=str, default=None)
+
+######################################################################
+
+grids_tasks = ", ".join(
+    [x.__name__.removeprefix("task_") for x in grids.Grids().all_tasks]
+)
+
+parser.add_argument(
+    "--grids_world_tasks",
+    type=str,
+    default="replace_color,translate,grow,frame",
+    help="A comma-separated subset of: " + grids_tasks + ".",
+)
+
+parser.add_argument(
+    "--grids_science_tasks",
+    type=str,
+    default=None,
+    help="A comma-separated subset of: " + grids_tasks + ", or None.",
+)
+
+######################################################################
+
+parser.add_argument("--sky_height", type=int, default=6)
+
+parser.add_argument("--sky_width", type=int, default=8)
+
+parser.add_argument("--sky_nb_birds", type=int, default=3)
+
+parser.add_argument("--sky_nb_iterations", type=int, default=2)
+
+parser.add_argument("--sky_speed", type=int, default=3)
+
 ######################################################################
 
 args = parser.parse_args()
@@ -91,20 +150,22 @@ args = parser.parse_args()
 if args.result_dir is None:
     args.result_dir = f"results_culture"
 
-######################################################################
-
-if args.dirty_debug:
-    accuracy_to_make_c_quizzes = 0.0
-    nb_new_c_quizzes_for_train = 100
-    nb_new_c_quizzes_for_test = 10
+assert not args.grids_science_tasks or (
+    len(
+        set(args.grids_world_tasks.split(","))
+        & set(args.grids_science_tasks.split(","))
+    )
+    == 0
+), "World and science tasks have to be disjoint"
 
 ######################################################################
 
 default_args = {
     "model": "37M",
-    "batch_size": 100,
-    "nb_train_samples": 250000,
-    "nb_test_samples": 10000,
+    "batch_size": 25,
+    "inference_batch_size": 50,
+    "nb_train_samples": 40000,
+    "nb_test_samples": 1000,
 }
 
 for k, v in default_args.items():
@@ -160,11 +221,15 @@ else:
 
 ######################################################################
 
-try:
-    os.mkdir(args.result_dir)
-except FileExistsError:
-    print(f"result directory {args.result_dir} already exists")
-    exit(1)
+if args.resume:
+    assert os.path.isdir(args.result_dir)
+
+else:
+    try:
+        os.mkdir(args.result_dir)
+    except FileExistsError:
+        print(f"result directory {args.result_dir} already exists")
+        exit(1)
 
 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
 
@@ -190,6 +255,18 @@ def log_string(s):
     sys.stdout.flush()
 
 
+######################################################################
+# Create a time-stamped archive of the source code
+
+with open("this_run.sh", "w") as f:
+    f.write(f"{' '.join(sys.argv)}\n")
+
+now = time.strftime("%Y%m%d-%H%M%S", time.localtime())
+
+os.system(f"tar zcvf {args.result_dir}/src-{now}.tgz *.py *.sh")
+
+######################################################################
+
 log_string(f"argv {' '.join(sys.argv)}")
 
 for n in vars(args):
@@ -198,6 +275,19 @@ for n in vars(args):
 
 ######################################################################
 
+if args.gpus == "all":
+    gpus_idx = range(torch.cuda.device_count())
+else:
+    gpus_idx = [int(k) for k in args.gpus.split(",")]
+
+gpus = [torch.device(f"cuda:{n}") for n in gpus_idx]
+
+if torch.cuda.is_available():
+    main_device = gpus[0]
+else:
+    assert len(gpus) == 0
+    main_device = torch.device("cpu")
+
 if args.dirty_debug:
     args.nb_train_samples = 2500
     args.nb_test_samples = 100
@@ -210,209 +300,734 @@ else:
 assert args.nb_train_samples % args.batch_size == 0
 assert args.nb_test_samples % args.batch_size == 0
 
-quizz_machine = quizz_machine.QuizzMachine(
-    problem=sky.Sky(height=6, width=8, nb_birds=3, nb_iterations=2),
-    nb_train_samples=args.nb_train_samples,
-    nb_test_samples=args.nb_test_samples,
-    batch_size=args.physical_batch_size,
+if args.problem == "sky":
+    problem = sky.Sky(
+        height=args.sky_height,
+        width=args.sky_width,
+        nb_birds=args.sky_nb_birds,
+        nb_iterations=args.sky_nb_iterations,
+        speed=args.sky_speed,
+        max_nb_cached_chunks=len(gpus) * args.nb_train_samples // 100,
+        chunk_size=100,
+        nb_threads=args.nb_threads,
+    )
+
+elif args.problem == "grids":
+    problem = grids.Grids(
+        max_nb_cached_chunks=len(gpus) * args.nb_train_samples // 100,
+        chunk_size=100,
+        nb_threads=args.nb_threads,
+        tasks=args.grids_world_tasks,
+    )
+
+    if args.grids_science_tasks is None:
+        science_w_quizzes = None
+    else:
+        science_problem = grids.Grids(
+            max_nb_cached_chunks=len(gpus) * args.nb_train_samples // 100,
+            chunk_size=100,
+            nb_threads=args.nb_threads,
+            tasks=args.grids_science_tasks,
+        )
+        science_w_quizzes = science_problem.generate_w_quizzes(100)
+
+        if not args.resume:
+            science_problem.save_some_examples(args.result_dir, "science_")
+
+
+else:
+    raise ValueError
+
+if not args.resume:
+    problem.save_some_examples(args.result_dir)
+
+quiz_machine = quiz_machine.QuizMachine(
+    problem=problem,
+    batch_size=args.inference_batch_size,
     result_dir=args.result_dir,
+    prompt_noise=args.prompt_noise,
     logger=log_string,
-    device=device,
+    device=main_device,
 )
 
 ######################################################################
 
-log_string(f"device {device}")
+log_string(f"main_device {main_device} gpus {[ str(g) for g in gpus]}")
 
-vocabulary_size = quizz_machine.vocabulary_size()
+vocabulary_size = quiz_machine.vocabulary_size()
 
 log_string(f"vocabulary_size {vocabulary_size}")
 
 ######################################################################
 
-# Compute the entropy of the training tokens
 
-token_count = 0
-for input in quizz_machine.batches(split="train", desc="train-entropy"):
-    token_count += F.one_hot(input, num_classes=quizz_machine.vocabulary_size()).sum(
-        (0, 1)
-    )
-token_probas = token_count / token_count.sum()
-entropy = -torch.xlogy(token_probas, token_probas).sum()
-train_set_perplexity = math.exp(entropy)
+def optimizer_to(optim, device):
+    for param in optim.state.values():
+        # Not sure there are any global tensors in the state dict
+        if isinstance(param, torch.Tensor):
+            param.data = param.data.to(device)
+            if param._grad is not None:
+                param._grad.data = param._grad.data.to(device)
+        elif isinstance(param, dict):
+            for subparam in param.values():
+                if isinstance(subparam, torch.Tensor):
+                    subparam.data = subparam.data.to(device)
+                    if subparam._grad is not None:
+                        subparam._grad.data = subparam._grad.data.to(device)
+
 
 ######################################################################
-# A bit of paranoia never hurts
-
-if args.max_percents_of_test_in_train >= 0:
-
-    def subsets_as_tuples(batches, cs):
-        s = set()
-        for batch in batches:
-            for x in batch:
-                s.add(tuple([v.item() for v in x]))
-                if len(s) == cs:
-                    yield s
-                    s = set()
-        yield s
-
-    nb_test, nb_in_train = 0, 0
-    for test_subset in subsets_as_tuples(
-        quizz_machine.batches(split="test", desc="test-check"), 25000
-    ):
-        in_train = set()
-        for train_subset in subsets_as_tuples(
-            quizz_machine.batches(split="train", desc="train-check"), 25000
+
+
+def run_tests(model, quiz_machine, local_device=main_device):
+    with torch.autograd.no_grad():
+        model.to(local_device).eval()
+        if args.schedule_free:
+            model.optimizer.eval()
+
+        nb_test_samples, acc_test_loss = 0, 0.0
+        nb_samples_accumulated = 0
+
+        full_input, full_mask_loss = quiz_machine.data_input(model, split="test")
+        src = zip(
+            full_input.split(args.batch_size), full_mask_loss.split(args.batch_size)
+        )
+
+        for input, mask_loss in tqdm.tqdm(
+            src,
+            dynamic_ncols=True,
+            desc="test",
+            total=full_input.size(0) // args.batch_size,
         ):
-            in_train.update(test_subset.intersection(train_subset))
-        nb_in_train += len(in_train)
-        nb_test += len(test_subset)
+            input = input.to(local_device)
+            mask_loss = mask_loss.to(local_device)
+            targets = input
 
-    log_string(
-        f"data_check {nb_in_train*100/nb_test:.02f}% ({nb_in_train}/{nb_test}) of test samples are in the train set"
-    )
+            output = model(mygpt.BracketedSequence(input)).x
+            loss_per_token = F.cross_entropy(
+                output.transpose(1, 2), targets, reduction="none"
+            )
+            loss = (loss_per_token * mask_loss).mean()
+            acc_test_loss += loss.item() * input.size(0)
+            nb_test_samples += input.size(0)
+
+        test_perplexity = math.exp(min(100, acc_test_loss / nb_test_samples))
+
+        log_string(f"test_perplexity {n_epoch} model {model.id} {test_perplexity}")
+
+        model.main_test_accuracy = quiz_machine.produce_results(
+            n_epoch=n_epoch,
+            model=model,
+            input=full_input[:2000],
+            result_dir=args.result_dir,
+        )
 
-    assert (
-        nb_in_train <= args.max_percents_of_test_in_train * nb_test / 100
-    ), f"More than {args.max_percents_of_test_in_train}% of test samples are in the train set"
 
-##############################
+######################################################################
 
 
-def one_epoch(model, quizz_machine):
-    optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
+def one_epoch(model, quiz_machine, local_device=main_device):
+    model.to(local_device).train()
+    optimizer_to(model.optimizer, local_device)
 
-    model.train()
+    if args.schedule_free:
+        model.optimizer.train()
 
     nb_train_samples, acc_train_loss = 0, 0.0
 
-    for input in quizz_machine.batches(split="train"):
-        input = input.to(device)
+    hard_w_quizzes = []
+
+    full_input, full_mask_loss = quiz_machine.data_input(model, split="train")
+    src = zip(full_input.split(args.batch_size), full_mask_loss.split(args.batch_size))
+
+    for input, mask_loss in tqdm.tqdm(
+        src,
+        dynamic_ncols=True,
+        desc="training",
+        total=full_input.size(0) // args.batch_size,
+    ):
+        input = input.to(local_device)
+        mask_loss = mask_loss.to(local_device)
 
         if nb_train_samples % args.batch_size == 0:
-            optimizer.zero_grad()
+            model.optimizer.zero_grad()
+
+        targets = input
 
         output = model(mygpt.BracketedSequence(input)).x
-        loss = F.cross_entropy(output.transpose(1, 2), input)
+        loss_per_token = F.cross_entropy(
+            output.transpose(1, 2), targets, reduction="none"
+        )
+        loss = (loss_per_token * mask_loss).mean() + model.loss
         acc_train_loss += loss.item() * input.size(0)
 
+        loss_per_samples = loss_per_token.detach().flatten(1).mean(dim=1)
+
         nb_train_samples += input.size(0)
 
         loss.backward()
 
         if nb_train_samples % args.batch_size == 0:
-            optimizer.step()
+            model.optimizer.step()
 
     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
 
-    log_string(f"train_perplexity {n_epoch} {train_perplexity}")
+    log_string(f"train_perplexity {n_epoch} model {model.id} {train_perplexity}")
+
+    run_tests(model, quiz_machine)
+
+    # threshold = torch.cat([l for _, l in hard_w_quizzes], dim=0).sort().values
+    # threshold = threshold[threshold.size(0) // 2]
+
+    # model.hard_w_quizzes = torch.cat(
+    # [x[l >= threshold] for x, l in hard_w_quizzes], dim=0
+    # )
+
+    model.to(main_device)
+    optimizer_to(model.optimizer, main_device)
 
 
 ######################################################################
 
 
-def run_tests(model, quizz_machine, deterministic_synthesis):
-    with torch.autograd.no_grad():
-        model.eval()
+def model_transformer_hot(model):
+    model.temperature = args.temperature_hot
+    # model.set_noise_injection(1.0, ("ffw", args.nb_blocks // 2))
 
-        nb_test_samples, acc_test_loss = 0, 0.0
-        nb_samples_accumulated = 0
 
-        for input in quizz_machine.batches(split="test"):
-            input = input.to(device)
+def model_transformer_cold(model):
+    model.temperature = args.temperature_cold
+    # pass
 
-            bs = model(mygpt.BracketedSequence(input))
-            output = bs.x
 
-            loss = F.cross_entropy(output.transpose(1, 2), input)
+c_quizzes_procedure = [
+    (("f_B", "f_A", "A", "B"), (1, 0, 0, 0), model_transformer_hot),
+    (("f_B", "f_A", "A", "B"), (0, 1, 1, 1), model_transformer_cold),
+    (("A", "f_A", "B", "f_B"), (0, 0, 0, 1), model_transformer_cold),
+    (("f_A", "A", "f_B", "B"), (0, 0, 0, 1), model_transformer_cold),
+]
 
-            acc_test_loss += loss.item() * input.size(0)
+######################################################################
 
-            nb_test_samples += input.size(0)
 
-        main_test_accuracy = quizz_machine.produce_results(
-            n_epoch=n_epoch,
+def save_additional_results(model, models, science_w_quizzes):
+    # Save generated quizzes with the successive steps
+
+    recorder = []
+
+    c_quizzes = quiz_machine.generate_c_quizzes(
+        64,
+        model_for_generation=model,
+        procedure=c_quizzes_procedure,
+        recorder=recorder,
+    )
+
+    # This is nb_quizzes x nb_models
+
+    seq_logproba = quiz_machine.models_logprobas(
+        models, c_quizzes, ("A", "f_A", "B", "f_B"), (0, 0, 0, 1), (0, 0, 1, 0)
+    ) + quiz_machine.models_logprobas(
+        models, c_quizzes, ("f_A", "A", "f_B", "B"), (0, 0, 0, 1), (0, 0, 1, 0)
+    )
+
+    probas = seq_logproba.exp()
+
+    comments = []
+
+    for l in seq_logproba:
+        comments.append("proba " + " ".join([f"{x.exp().item():.02f}" for x in l]))
+
+    ##
+
+    c_quizzes = torch.cat([c[:, None, :] for c, _, in recorder], dim=1)
+    predicted_parts = torch.cat([t[:, None, :] for _, t in recorder], dim=1)
+    nb_steps = c_quizzes.size(1)
+    c_quizzes = c_quizzes.reshape(-1, c_quizzes.size(-1))
+    predicted_parts = predicted_parts.reshape(-1, predicted_parts.size(-1))
+
+    # We have comments only for the final quiz, not the successive
+    # steps, so we have to add nb_steps-1 empty comments
+
+    steps_comments = []
+    for c in comments:
+        steps_comments += [""] * (nb_steps - 1) + [c]
+
+    filename = f"non_validated_{n_epoch:04d}_{model.id:02d}.png"
+
+    quiz_machine.problem.save_quizzes_as_image(
+        args.result_dir,
+        filename,
+        quizzes=c_quizzes,
+        predicted_parts=predicted_parts,
+        comments=steps_comments,
+        nrow=nb_steps * 2,  # two quiz per row
+    )
+
+    log_string(f"wrote {filename}")
+
+    ######################################################################
+
+    if science_w_quizzes is not None:
+        struct = ("A", "f_A", "B", "f_B")
+        mask = (0, 0, 0, 1)
+        result, correct = quiz_machine.predict(
             model=model,
-            result_dir=args.result_dir,
-            logger=log_string,
-            deterministic_synthesis=deterministic_synthesis,
+            quizzes=science_w_quizzes.to(main_device),
+            struct=struct,
+            mask=mask,
         )
 
-        test_perplexity = math.exp(min(100, acc_test_loss / nb_test_samples))
+        predicted_parts = torch.tensor(mask, device=correct.device)[None, :].expand(
+            correct.size(0), -1
+        )
+        correct = (2 * correct - 1) * (predicted_parts.sum(dim=-1) == 1).long()
+
+        nb_correct = (correct == 1).long().sum()
+        nb_total = (correct != 0).long().sum()
+
+        log_string(
+            f"science_accuracy {n_epoch} model {model.id} val {nb_correct} / {nb_total}"
+        )
+
+        i = correct == 1
+        j = correct != 1
 
-        log_string(f"test_perplexity {n_epoch} {test_perplexity}")
+        result = torch.cat([result[i], result[j]], dim=0)
+        correct = torch.cat([correct[i], correct[j]], dim=0)
+        correct_parts = predicted_parts * correct[:, None]
 
-    model.main_test_accuracy = main_test_accuracy
+        result = result[:128]
+        predicted_parts = predicted_parts[:128]
+        correct_parts = correct_parts[:128]
+
+        quiz_machine.problem.save_quizzes_as_image(
+            args.result_dir,
+            f"culture_science_{n_epoch:04d}_{model.id:02d}.png",
+            quizzes=result,
+            predicted_parts=predicted_parts,
+            correct_parts=correct_parts,
+        )
 
 
 ######################################################################
 
 
-def create_c_quizzes(
-    models,
-    quizz_machine,
-    nb_for_train=1000,
-    nb_for_test=100,
-    min_ave_seq_logproba=None,
-):
-    kept = []
-    model_indexes = []
-    sum_logits, sum_nb_c_quizzes = 0, 0
+def record_new_c_quizzes(models, quiz_machine, nb_for_train=1000, nb_for_test=100):
+    nb_to_validate = nb_for_train + nb_for_test
+    nb_to_generate_per_iteration = max(args.physical_batch_size, nb_to_validate)
+    nb_validated = 0
 
-    while sum([x.size(0) for x in kept]) < nb_for_train + nb_for_test:
-        nb_to_generate = nb_for_train + nb_for_test
+    recorded_validated = []
 
-        if len(model_indexes) == 0:
-            model_indexes = [i.item() for i in torch.randperm(len(models))]
+    start_time = time.perf_counter()
 
-        model = models[model_indexes.pop()]
+    nb_validated_per_model = torch.zeros(len(models), dtype=torch.int64)
 
-        new_c_quizzes, nb_correct, ave_seq_logproba = quizz_machine.create_c_quizzes(
-            nb=nb_to_generate,
+    while nb_validated_per_model.sum() < nb_to_validate:
+        # We use the model that has generated the fewest quizzes to
+        # balance the number of quizzes per model overall
+
+        # model_for_generation = sorted(
+        # models, key=lambda m: nb_validated_per_model[m.id]
+        # )[0]
+
+        model_for_generation = models[torch.randint(len(models), (1,)).item()]
+
+        # We generate quizzes with a procedure that injects some
+        # structured noise
+
+        c_quizzes = quiz_machine.generate_c_quizzes(
+            nb_to_generate_per_iteration,
             model_for_generation=model,
-            models_for_validation=models,
-            min_ave_seq_logproba=min_ave_seq_logproba,
-            n_epoch=n_epoch,
-            result_dir=args.result_dir,
-            logger=log_string,
+            procedure=c_quizzes_procedure,
         )
 
-        sum_logits += new_c_quizzes.size(0) * ave_seq_logproba
-        sum_nb_c_quizzes += new_c_quizzes.size(0)
+        # We discard the trivial ones, according to a criterion
+        # specific to the world quizzes (e.g. B=f(B))
 
-        to_keep = new_c_quizzes[nb_correct == len(models) - 1]
+        to_keep = quiz_machine.problem.trivial(c_quizzes) == False
 
-        if args.dirty_debug:
-            to_keep = new_c_quizzes[
-                torch.randint(3, (new_c_quizzes.size(0),), device=new_c_quizzes.device)
-                == 0
-            ]
+        c_quizzes = c_quizzes[to_keep]
 
-        kept.append(to_keep)
+        # This is nb_quizzes x nb_models
+
+        seq_logproba = quiz_machine.models_logprobas(
+            models, c_quizzes, ("A", "f_A", "B", "f_B"), (0, 0, 0, 1), (0, 0, 1, 0)
+        ) + quiz_machine.models_logprobas(
+            models, c_quizzes, ("f_A", "A", "f_B", "B"), (0, 0, 0, 1), (0, 0, 1, 0)
+        )
+
+        probas = seq_logproba.exp()
+
+        nb_succeed = (probas >= args.proba_understands).long().sum(dim=1)
+        nb_fail = (probas <= args.proba_not_understands).long().sum(dim=1)
+
+        to_keep = (
+            (nb_succeed + nb_fail == probas.size(1))
+            & (nb_fail >= 1)
+            & (nb_fail <= args.max_fail_to_validate)
+        )
+
+        c_quizzes = c_quizzes[to_keep]
+
+        if c_quizzes.size(0) > 0:
+            nb_validated_per_model[model_for_generation.id] += c_quizzes.size(0)
+            recorded_validated.append(c_quizzes)
+            nb_validated = c_quizzes.size(0)
+        else:
+            nb_validated = 0
+
+        total_nb_validated = nb_validated_per_model.sum().item()
+
+        duration = time.perf_counter() - start_time
+
+        if total_nb_validated > 0:
+            if total_nb_validated < nb_to_validate:
+                d = (
+                    (nb_to_validate - total_nb_validated)
+                    * duration
+                    / total_nb_validated
+                )
+                e = (datetime.datetime.now() + datetime.timedelta(seconds=d)).strftime(
+                    "%a %H:%M"
+                )
+            else:
+                e = "now!"
+        else:
+            e = "???"
 
         log_string(
-            f"keep c_quizzes {to_keep.size(0)}/{new_c_quizzes.size(0)} ({to_keep.size(0)*100/new_c_quizzes.size(0):.02f}%) total {sum([ x.size(0) for x in kept])}/{nb_to_generate}"
+            f"keep c_quizzes model {model_for_generation.id} validated {nb_validated} / {nb_to_generate_per_iteration} ({100*nb_validated/nb_to_generate_per_iteration:.02f}%) nb_accumulated {total_nb_validated} / {nb_to_validate} (finishes {e} -- {int((total_nb_validated * 3600)/duration)}/h)"
         )
 
-    new_c_quizzes = torch.cat(kept, dim=0)[: nb_for_train + nb_for_test]
+    validated_quizzes = torch.cat(recorded_validated, dim=0)
 
-    quizz_machine.store_c_quizzes(new_c_quizzes[:nb_for_train], for_train=True)
-    quizz_machine.store_c_quizzes(new_c_quizzes[nb_for_train:], for_train=False)
+    ######################################################################
+    # store the new c_quizzes which have been validated
 
-    quizz_machine.problem.save_quizzes(
-        new_c_quizzes[:72],
-        args.result_dir,
-        f"culture_c_quiz_{n_epoch:04d}_{model.id:02d}",
+    v_train = validated_quizzes[:nb_for_train]
+    quiz_machine.store_c_quizzes(v_train, for_train=True)
+
+    v_test = validated_quizzes[nb_for_train:nb_to_validate]
+    quiz_machine.store_c_quizzes(v_test, for_train=False)
+
+    ######################################################################
+    # save images
+
+    vq = validated_quizzes[torch.randperm(validated_quizzes.size(0))[:128]]
+
+    if vq.size(0) > 0:
+        seq_logproba = quiz_machine.models_logprobas(
+            models, vq, ("A", "f_A", "B", "f_B"), (0, 0, 0, 1), (0, 0, 1, 0)
+        ) + quiz_machine.models_logprobas(
+            models, vq, ("f_A", "A", "f_B", "B"), (0, 0, 0, 1), (0, 0, 1, 0)
+        )
+
+        probas = seq_logproba.exp()
+
+        comments = []
+
+        for l in seq_logproba:
+            comments.append("proba " + " ".join([f"{x.exp().item():.02f}" for x in l]))
+
+        filename = f"culture_c_quiz_{n_epoch:04d}.png"
+        quiz_machine.problem.save_quizzes_as_image(
+            args.result_dir, filename, vq, comments=comments
+        )
+
+
+######################################################################
+
+# The generator is very similar to a "solving GPT" except that it
+# deals with quizzes prologued with one token per solving GPT that
+# indicates if the said model solves it or not.
+#
+# There are three levels of solving 0->proba<=proba_not_understands,
+# 2->proba>=proba_understands and 1 otherwise.
+
+
+def generate_c_quizzes_with_generator(generator, quiz_machine, nb):
+    generator.to(main_device)
+
+    struct = ("A", "f_A", "B", "f_B")
+
+    c_quizzes = quiz_machine.problem.create_empty_quizzes(nb, struct=struct)
+    ar_mask = quiz_machine.make_quiz_mask(c_quizzes, struct, (1, 1, 1, 1))
+
+    i = F.one_hot(
+        torch.randint(args.nb_gpts, (c_quizzes.size(0),)),
+        num_classes=args.nb_gpts,
+    )
+
+    prologs_c_quizzes = token_prolog_0 * i + token_prolog_2 * (1 - i)
+    prologs_ar_mask = ar_mask.new_zeros(ar_mask.size(0), prologs_c_quizzes.size(1))
+
+    prologued_c_quizzes = torch.cat([prologs_c_quizzes, c_quizzes], dim=1).to(
+        main_device
     )
+    prologued_ar_mask = torch.cat([prologs_ar_mask, ar_mask], dim=1).to(main_device)
+
+    seq_logproba = torch.zeros(
+        prologued_c_quizzes.size(0), device=prologued_c_quizzes.device
+    )
+
+    generator.temperature = args.temperature_hot
+
+    with torch.autograd.no_grad():
+        t = generator.training
+        generator.eval()
+
+        one_batch_masked_inplace_autoregression(
+            generator,
+            prologued_c_quizzes,
+            prologued_ar_mask,
+            seq_logproba,
+            deterministic_synthesis=False,
+        )
+
+        generator.train(t)
+
+    generator.reset_transformations()
+
+    prologued_c_quizzes = (
+        prologued_c_quizzes * (prologued_c_quizzes < vocabulary_size).long()
+    )
+
+    c_quizzes = prologued_c_quizzes[:, prologs_c_quizzes.size(1) :]
+
+    return c_quizzes.to("cpu"), prologs_c_quizzes.to("cpu")
+
+
+def batches_for_generator(generator, quiz_machine, models, fraction_w_quizzes=1.0):
+    samples = []
+
+    for _ in range(args.nb_train_samples // args.batch_size):
+        while sum([x.size(0) for x in samples]) < args.batch_size:
+            # Generate a bunch of quizzes
+
+            if torch.rand(1).item() <= fraction_w_quizzes:
+                # Either we start with the world quizzes
+                c_quizzes = quiz_machine.problem.generate_w_quizzes(
+                    args.batch_size, progress_bar=False
+                )
+            else:
+                # Or we use the generator itself to generate them
+                c_quizzes, _ = generate_c_quizzes_with_generator(
+                    generator, quiz_machine, args.batch_size
+                )
+
+            # We remove the trivial ones
+            to_keep = quiz_machine.problem.trivial(c_quizzes) == False
+            c_quizzes = c_quizzes[to_keep]
+
+            # If there are remaining ones, we compute the true prolog
+            # that indicates how the GPTs solve it
+
+            if c_quizzes.size(0) > 0:
+                seq_logproba = quiz_machine.models_logprobas(
+                    models,
+                    c_quizzes,
+                    ("A", "f_A", "B", "f_B"),
+                    (0, 0, 0, 1),
+                    (0, 0, 1, 0),
+                ) + quiz_machine.models_logprobas(
+                    models,
+                    c_quizzes,
+                    ("f_A", "A", "f_B", "B"),
+                    (0, 0, 0, 1),
+                    (0, 0, 1, 0),
+                )
+
+                probas = seq_logproba.exp()
+
+                u0 = probas <= args.proba_not_understands
+                u2 = probas >= args.proba_understands
+                u1 = (u0 | u2) == False
+
+                prologs = (
+                    (u0.long() * token_prolog_0)
+                    + (u1.long() * token_prolog_1)
+                    + (u2.long() * token_prolog_2)
+                )
+
+                prologued_c_quizzes = torch.cat([prologs, c_quizzes], dim=1)
+
+                # nb_u2 = u2.long().sum(dim=1)
+                # nb_u0 = u0.long().sum(dim=1)
+                # prologued_c_quizzes = prologued_c_quizzes[(nb_u2 >= 1) & (nb_u0 >= 1)]
+
+                if prologued_c_quizzes.size(0) > 0:
+                    samples.append(prologued_c_quizzes)
+
+        # Now we yield a batch
+
+        x = torch.cat(samples, dim=0)
+        samples = [x[args.batch_size :]]
+
+        yield x[: args.batch_size]
+
+
+def one_generator_epoch(
+    generator, quiz_machine, models, fraction_w_quizzes, local_device=main_device
+):
+    model.to(local_device).train()
+
+    optimizer = torch.optim.Adam(generator.parameters(), lr=args.learning_rate)
+
+    nb_train_samples, acc_train_loss = 0, 0.0
+
+    src = batches_for_generator(
+        generator=generator,
+        quiz_machine=quiz_machine,
+        models=models,
+        fraction_w_quizzes=fraction_w_quizzes,
+    )
+
+    for input in tqdm.tqdm(
+        src,
+        dynamic_ncols=True,
+        desc="training",
+        total=args.nb_train_samples // args.batch_size,
+    ):
+        input = input.to(local_device)
+
+        if nb_train_samples % args.batch_size == 0:
+            optimizer.zero_grad()
+
+        targets = input
+
+        output = generator(mygpt.BracketedSequence(input)).x
+        loss = F.cross_entropy(output.transpose(1, 2), targets)
+        acc_train_loss += loss.item() * input.size(0)
+        nb_train_samples += input.size(0)
 
-    return sum_logits / sum_nb_c_quizzes
+        loss.backward()
+
+        if nb_train_samples % args.batch_size == 0:
+            optimizer.step()
+
+    train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
+
+    log_string(f"train_perplexity {n_epoch} generator - {train_perplexity}")
+
+    generator.to(main_device)
+
+
+######################################################################
+
+
+def train_complexifier(model_gen, model_pred1, model_pred2):
+    samples = []
+    perf = []
+
+    optimizer = torch.optim.Adam(model_gen.parameters(), lr=args.learning_rate)
+
+    nb_train_samples, acc_train_loss = 0, 0.0
+
+    for n_epoch in range(args.nb_epochs):
+        for b in range(args.nb_train_samples // args.batch_size):
+            while sum([x.size(0) for x in samples]) < args.batch_size:
+                c_quizzes = quiz_machine.generate_c_quizzes(
+                    args.inference_batch_size,
+                    model_for_generation=model_gen,
+                    procedure=c_quizzes_procedure,
+                )
+                to_keep = quiz_machine.problem.trivial(c_quizzes) == False
+                c_quizzes = c_quizzes[to_keep]
+                if c_quizzes.size(0) > 0:
+                    seq_logproba = quiz_machine.models_logprobas(
+                        [model_pred1, model_pred2],
+                        c_quizzes,
+                        ("A", "f_A", "B", "f_B"),
+                        (0, 0, 0, 1),
+                    ) + quiz_machine.models_logprobas(
+                        [model_pred1, model_pred2],
+                        c_quizzes,
+                        ("f_A", "A", "f_B", "B"),
+                        (0, 0, 0, 1),
+                    )
+                    probas = seq_logproba.exp()
+                    to_keep = (probas[:, model_pred1.id] >= args.proba_understands) & (
+                        probas[:, model_pred2.id] <= args.proba_not_understands
+                    )
+                    log_string(
+                        f"generating {to_keep.long().sum()} / {c_quizzes.size(0)}"
+                    )
+                    c_quizzes = c_quizzes[to_keep]
+                    if c_quizzes.size(0):
+                        samples.append(c_quizzes)
+
+            log_string(f"full batch {sum([x.size(0) for x in samples])}")
+
+            x = torch.cat(samples, dim=0)
+
+            input = x[: args.batch_size]
+            samples = [x[args.batch_size :]]
+
+            # -------------------
+
+            seq_logproba = quiz_machine.models_logprobas(
+                [model_pred1, model_pred2],
+                input,
+                ("A", "f_A", "B", "f_B"),
+                (0, 0, 0, 1),
+            ) + quiz_machine.models_logprobas(
+                [model_pred1, model_pred2],
+                input,
+                ("f_A", "A", "f_B", "B"),
+                (0, 0, 0, 1),
+            )
+
+            comments = []
+
+            for l in seq_logproba:
+                comments.append(
+                    f"proba {l[model_pred1.id].exp().item():.02f} {l[model_pred2.id].exp().item():.02f}"
+                )
+
+            filename = f"batch_{n_epoch:04d}_{b:04d}.png"
+            quiz_machine.problem.save_quizzes_as_image(
+                args.result_dir, filename, input, comments=comments
+            )
+            log_string(f"wrote {filename}")
+
+            # ------------------------
+
+            input = input.to(main_device)
+
+            if nb_train_samples % args.batch_size == 0:
+                optimizer.zero_grad()
+
+            output = model_gen(mygpt.BracketedSequence(input)).x
+            loss = F.cross_entropy(output.transpose(1, 2), input)
+            acc_train_loss += loss.item() * input.size(0)
+            nb_train_samples += input.size(0)
+
+            loss.backward()
+
+            if nb_train_samples % args.batch_size == 0:
+                optimizer.step()
+
+        train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
+
+        log_string(f"train_perplexity {n_epoch} model ae {train_perplexity}")
 
 
 ######################################################################
 
 models = []
 
+
+def compute_causal_attzero(t_q, t_k):
+    return t_q < t_k
+
+
+if args.schedule_free:
+    import schedulefree
+
 for k in range(args.nb_gpts):
+    log_string(f"creating model {k} and its w_quizzes")
+
     model = mygpt.MyGPT(
         vocabulary_size=vocabulary_size,
         dim_model=args.dim_model,
@@ -420,74 +1035,342 @@ for k in range(args.nb_gpts):
         dim_hidden=args.dim_hidden,
         nb_heads=args.nb_heads,
         nb_blocks=args.nb_blocks,
-        causal=True,
+        compute_attzero=compute_causal_attzero,
         dropout=args.dropout,
-    ).to(device)
+    ).to(main_device)
 
-    model.main_test_accuracy = 0.0
     model.id = k
 
+    if args.schedule_free:
+        model.optimizer = schedulefree.AdamWScheduleFree(
+            model.parameters(), lr=args.learning_rate
+        )
+    else:
+        model.optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
+
+    model.main_test_accuracy = 0.0
+
+    model.train_w_quizzes = quiz_machine.problem.generate_w_quizzes(
+        args.nb_train_samples
+    )
+
+    model.test_w_quizzes = quiz_machine.problem.generate_w_quizzes(args.nb_test_samples)
+
     models.append(model)
 
+######################################################################
+
+if args.test == "quant":
+    nb_bits = 8
+    for model in models:
+        model.trunk.insert(
+            12,
+            mygpt.CacheWrapper(
+                mygpt.RandomBypass(
+                    nn.Sequential(
+                        nn.Linear(args.dim_model, nb_bits),
+                        mygpt.BSQ(nb_bits),
+                        nn.Linear(nb_bits, args.dim_model),
+                    ),
+                    0.1,
+                )
+            ),
+        )
+
+        print(model)
+        exit(0)
+
+
+######################################################################
+
+current_epoch = 0
+
+if args.resume:
+    for model in models:
+        filename = f"gpt_{model.id:03d}.pth"
+
+        try:
+            d = torch.load(os.path.join(args.result_dir, filename))
+            model.load_state_dict(d["state_dict"])
+            model.optimizer.load_state_dict(d["optimizer_state_dict"])
+            model.main_test_accuracy = d["main_test_accuracy"]
+            log_string(f"successfully loaded {filename}")
+        except FileNotFoundError:
+            log_string(f"cannot find {filename}")
+            pass
+
+    try:
+        filename = "c_quizzes.pth"
+        quiz_machine.load_c_quizzes(os.path.join(args.result_dir, filename))
+        log_string(f"successfully loaded {filename}")
+    except FileNotFoundError:
+        log_string(f"cannot find {filename}")
+        pass
+
+    try:
+        filename = "state.pth"
+        state = torch.load(os.path.join(args.result_dir, filename))
+        log_string(f"successfully loaded {filename}")
+        current_epoch = state["current_epoch"]
+    except FileNotFoundError:
+        log_string(f"cannot find {filename}")
+        pass
+
+######################################################################
 
 nb_parameters = sum(p.numel() for p in models[0].parameters())
 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
 
 ######################################################################
 
-min_ave_seq_logproba = None
+if args.nb_new_c_quizzes_for_train is None:
+    args.nb_new_c_quizzes_for_train = args.nb_train_samples // 100
 
-for n_epoch in range(args.nb_epochs):
-    log_string(f"--- epoch {n_epoch} ----------------------------------------")
+if args.nb_new_c_quizzes_for_test is None:
+    args.nb_new_c_quizzes_for_test = args.nb_test_samples // 100
+
+log_string(
+    f"nb_new_c_quizzes_for_train {args.nb_new_c_quizzes_for_train} nb_new_c_quizzes_for_test {args.nb_new_c_quizzes_for_test}"
+)
 
-    a = [(model.id, float(model.main_test_accuracy)) for model in models]
-    a.sort(key=lambda p: p[0])
-    log_string(f"current accuracies {a}")
+######################################################################
+
+if args.dirty_debug:
+    args.accuracy_to_make_c_quizzes = 0.0
+    args.nb_gpts = 2
+    args.nb_new_c_quizzes_for_train = 100
+    args.nb_new_c_quizzes_for_test = 10
+
+######################################################################
 
-    # select the model with lowest accuracy
-    models.sort(key=lambda model: model.main_test_accuracy)
+if args.test == "tsne":
     model = models[0]
 
-    log_string(
-        f"training model {model.id} main_test_accuracy {model.main_test_accuracy}"
-    )
+    quizzes = []
+    labels = []
+    nb_samples_per_task = 1000
 
-    # improve it
-    one_epoch(model, quizz_machine)
+    for n, t in enumerate(args.grids_world_tasks.split(",")):
+        quizzes.append(
+            quiz_machine.problem.generate_w_quizzes(nb_samples_per_task, [t])
+        )
+        labels.append(torch.full((quizzes[-1].size(0),), n))
 
-    quizz_machine.renew_w_quizzes(args.nb_train_samples // args.nb_gpts)
+    quizzes = torch.cat(quizzes, dim=0)
+    labels = torch.cat(labels, dim=0)
 
-    log_string(
-        f"train_set_composition w_quizzes {quizz_machine.nb_batch_w_quizzes} c_quizzes {quizz_machine.nb_batch_c_quizzes}"
-    )
+    with torch.autograd.no_grad():
+        model.eval().to(main_device)
+        record = []
+        for input, targets in zip(
+            quizzes.split(args.batch_size), labels.split(args.batch_size)
+        ):
+            input = input.to(main_device)
+            bs = mygpt.BracketedSequence(input)
+            bs = mygpt.BracketedSequence(F.pad(bs.x, (1, -1)), bs.first, bs.nb)
+            bs = model.embedding(bs)
+            bs = model.trunk[args.nb_blocks // 2](bs)
+            record.append((bs.x.to("cpu"), targets))
 
-    # test it
-    run_tests(model, quizz_machine, deterministic_synthesis=False)
+    x = torch.cat([x for x, y in record], dim=0).flatten(1)
+    y = torch.cat([y for x, y in record], dim=0)
 
-    log_string(
-        f"test_set_composition w_quizzes {quizz_machine.nb_batch_w_quizzes} c_quizzes {quizz_machine.nb_batch_c_quizzes}"
-    )
+    print(f"{x.size()=} {y.size()=}")
+    # torch.save((x,y), "/tmp/embed.pth")
+    # exit(0)
 
-    if min([m.main_test_accuracy for m in models]) >= accuracy_to_make_c_quizzes:
-        ave_seq_logproba = create_c_quizzes(
-            models,
-            quizz_machine,
-            nb_for_train=nb_new_c_quizzes_for_train,
-            nb_for_test=nb_new_c_quizzes_for_test,
-            min_ave_seq_logproba=min_ave_seq_logproba,
+    from sklearn.manifold import TSNE
+
+    x_np = x.numpy()
+    z_np = TSNE(n_components=2, perplexity=50).fit_transform(x_np)
+    z = torch.from_numpy(z_np)
+
+    print(f"{z.size()=}")
+
+    with open("/tmp/result.dat", "w") as f:
+        for k in range(z.size(0)):
+            f.write(f"{y[k]} {z[k,0]} {z[k,1]}\n")
+
+    exit(0)
+
+######################################################################
+
+if args.test == "generator":
+    token_prolog_0 = vocabulary_size + 0
+    token_prolog_1 = vocabulary_size + 1
+    token_prolog_2 = vocabulary_size + 2
+    generator_vocabulary_size = vocabulary_size + 3
+
+    generator = mygpt.MyGPT(
+        vocabulary_size=generator_vocabulary_size,
+        dim_model=args.dim_model,
+        dim_keys=args.dim_keys,
+        dim_hidden=args.dim_hidden,
+        nb_heads=args.nb_heads,
+        nb_blocks=args.nb_blocks,
+        compute_attzero=compute_causal_attzero,
+        dropout=args.dropout,
+    ).to(main_device)
+
+    generator.main_test_accuracy = 0.0
+
+    filename = f"generator.pth"
+
+    try:
+        d = torch.load(os.path.join(args.result_dir, filename))
+        generator.load_state_dict(d[0])
+        generator.main_test_accuracy = d[1]
+        log_string(f"successfully loaded {filename}")
+    except FileNotFoundError:
+        log_string(f"cannot find {filename}")
+        pass
+
+    for n_epoch in range(args.nb_epochs):
+        one_generator_epoch(
+            generator,
+            quiz_machine=quiz_machine,
+            models=models,
+            fraction_w_quizzes=1 if n_epoch < 25 else 0.5,
+            local_device=main_device,
         )
 
-        # We keep the first average logits as a reference
-        if min_ave_seq_logproba is None:
-            min_ave_seq_logproba = ave_seq_logproba
-        else:
-            log_string(
-                f"min_ave_seq_logproba {min_ave_seq_logproba} ave_seq_logproba {ave_seq_logproba}"
+        filename = f"generator.pth"
+        torch.save(
+            (generator.state_dict(), generator.main_test_accuracy),
+            os.path.join(args.result_dir, filename),
+        )
+        log_string(f"wrote {filename}")
+
+        c_quizzes, prologs = generate_c_quizzes_with_generator(
+            generator, quiz_machine, args.batch_size
+        )
+
+        seq_logproba = quiz_machine.models_logprobas(
+            models, c_quizzes, ("A", "f_A", "B", "f_B"), (0, 0, 0, 1), (0, 0, 1, 0)
+        ) + quiz_machine.models_logprobas(
+            models, c_quizzes, ("f_A", "A", "f_B", "B"), (0, 0, 0, 1), (0, 0, 1, 0)
+        )
+
+        probas = seq_logproba.exp()
+
+        u0 = probas <= args.proba_not_understands
+        u2 = probas >= args.proba_understands
+        u1 = (u0 | u2) == False
+
+        predicted_prologs = (
+            (u0.long() * token_prolog_0)
+            + (u1.long() * token_prolog_1)
+            + (u2.long() * token_prolog_2)
+        )
+
+        comments = []
+
+        nb_errors = (predicted_prologs != prologs).long().sum()
+        nb_total = prologs.numel()
+
+        log_string(f"generator_error {nb_errors} / {nb_total}")
+
+        def readable(prologs):
+            return (prologs == token_prolog_1) + 2 * (prologs == token_prolog_2)
+
+        for aa, ee, ff in zip(probas, readable(predicted_prologs), readable(prologs)):
+            sa = "prolog " + " ".join(
+                [f"{e.item()}/{f.item()}" for e, f in zip(ee, ff)]
             )
+            sp = "proba " + " ".join([f"{p.item():.02f}" for p in aa])
+            comments.append(sa + "\n" + sp)
+
+        filename = f"generator_batch_{n_epoch:04d}.png"
+        quiz_machine.problem.save_quizzes_as_image(
+            args.result_dir, filename, c_quizzes, comments=comments
+        )
+        log_string(f"wrote {filename}")
+
+    exit(0)
+
+######################################################################
+
+for n_epoch in range(current_epoch, args.nb_epochs):
+    state = {"current_epoch": n_epoch}
+    filename = "state.pth"
+    torch.save(state, os.path.join(args.result_dir, filename))
+    log_string(f"wrote {filename}")
+
+    log_string(f"--- epoch {n_epoch} ----------------------------------------")
+
+    cta = " ".join([f"{float(m.main_test_accuracy):.04f}" for m in models])
+    log_string(f"current_test_accuracies {cta}")
 
-        # We update everyone
+    ##################################################
+    # If all the models are good enough, generate new quizzes and
+    # re-compute the test errors
+
+    if min([m.main_test_accuracy for m in models]) >= args.accuracy_to_make_c_quizzes:
+        record_new_c_quizzes(
+            models,
+            quiz_machine,
+            nb_for_train=args.nb_new_c_quizzes_for_train,
+            nb_for_test=args.nb_new_c_quizzes_for_test,
+        )
+
+        filename = "c_quizzes.pth"
+        quiz_machine.save_c_quizzes(os.path.join(args.result_dir, filename))
+        log_string(f"wrote {filename}")
+
+        # Force one epoch of training
         for model in models:
-            run_tests(model, quizz_machine, deterministic_synthesis=False)
+            model.main_test_accuracy = 0.0
+
+    ##################################################
+    # Select, improve, and eval the worst model(s)
+
+    ranked_models = sorted(models, key=lambda m: float(m.main_test_accuracy))
+
+    weakest_models = ranked_models[: len(gpus)]
+
+    threads = []
+
+    for gpu, model in zip(gpus, weakest_models):
+        log_string(f"training model {model.id}")
+
+        t = threading.Thread(
+            target=one_epoch, daemon=True, args=(model, quiz_machine, gpu)
+        )
+
+        threads.append(t)
+
+        t.start()
+
+    for t in threads:
+        t.join()
+
+    # Save the models to disk
+
+    for model in weakest_models:
+        filename = f"gpt_{model.id:03d}.pth"
+        torch.save(
+            {
+                "state_dict": model.state_dict(),
+                "optimizer_state_dict": model.optimizer.state_dict(),
+                "main_test_accuracy": model.main_test_accuracy,
+            },
+            os.path.join(args.result_dir, filename),
+        )
+        log_string(f"wrote {filename}")
+
+    for model in weakest_models:
+        save_additional_results(model, models, science_w_quizzes)
+
+    ######################################################################
+
+    # Renew the training samples
+
+    for model in weakest_models:
+        quiz_machine.renew_train_w_quizzes(model=model)
 
+    if args.log_command is not None:
+        s = args.log_command.split()
+        s.insert(1, args.result_dir)
+        subprocess.run(s)
 
 ######################################################################