Update.
[picoclvr.git] / main.py
diff --git a/main.py b/main.py
index 08afb66..0144817 100755 (executable)
--- a/main.py
+++ b/main.py
@@ -8,7 +8,7 @@
 # torch.backends.cuda.matmul.allow_tf23
 # torch.autocast(torch.bfloat16)
 
-import math, sys, argparse, time, tqdm, itertools, os
+import math, sys, argparse, time, tqdm, os
 
 import torch, torchvision
 from torch import nn
@@ -27,18 +27,23 @@ else:
 ######################################################################
 
 parser = argparse.ArgumentParser(
-    description="An implementation of GPT with cache to solve a toy geometric reasoning task."
+    description="An implementation of GPT with cache.",
+    formatter_class=argparse.ArgumentDefaultsHelpFormatter,
 )
 
-parser.add_argument("--log_filename", type=str, default="train.log")
+parser.add_argument(
+    "--task", type=str, default="picoclvr", help="picoclvr, mnist, maze, snake"
+)
+
+parser.add_argument("--log_filename", type=str, default="train.log", help=" ")
 
 parser.add_argument("--result_dir", type=str, default="results_default")
 
 parser.add_argument("--seed", type=int, default=0)
 
-parser.add_argument("--nb_epochs", type=int, default=25)
+parser.add_argument("--nb_epochs", type=int, default=None)
 
-parser.add_argument("--batch_size", type=int, default=25)
+parser.add_argument("--batch_size", type=int, default=None)
 
 parser.add_argument("--nb_train_samples", type=int, default=250000)
 
@@ -73,19 +78,39 @@ parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
 ##############################
 # picoclvr options
 
-parser.add_argument("--nb_colors", type=int, default=5)
+parser.add_argument("--picoclvr_nb_colors", type=int, default=5)
+
+parser.add_argument("--picoclvr_height", type=int, default=12)
+
+parser.add_argument("--picoclvr_width", type=int, default=16)
+
+parser.add_argument("--picocvlr_prune_properties", type=str, default="none")
+
+##############################
+# Maze options
+
+parser.add_argument("--maze_height", type=int, default=13)
+
+parser.add_argument("--maze_width", type=int, default=21)
+
+parser.add_argument("--maze_nb_walls", type=int, default=15)
+
+##############################
+# Snake options
+
+parser.add_argument("--snake_height", type=int, default=6)
 
-parser.add_argument("--height", type=int, default=12)
+parser.add_argument("--snake_width", type=int, default=8)
 
-parser.add_argument("--width", type=int, default=16)
+parser.add_argument("--snake_nb_colors", type=int, default=5)
 
-parser.add_argument("--prune_properties", type=str, default="none")
+parser.add_argument("--snake_length", type=int, default=200)
 
 ######################################################################
 
 args = parser.parse_args()
 
-assert args.prune_properties in {"none", "train+eval", "eval"}
+assert args.picocvlr_prune_properties in {"none", "train+eval", "eval"}
 
 try:
     os.mkdir(args.result_dir)
@@ -106,6 +131,32 @@ if args.seed >= 0:
 
 ######################################################################
 
+default_args = {
+    "picoclvr": {
+        "nb_epochs": 25,
+        "batch_size": 25,
+    },
+    "mnist": {
+        "nb_epochs": 25,
+        "batch_size": 10,
+    },
+    "maze": {
+        "nb_epochs": 25,
+        "batch_size": 25,
+    },
+    "snake": {
+        "nb_epochs": 5,
+        "batch_size": 25,
+    },
+}
+
+if args.task in default_args:
+    for k, v in default_args[args.task].items():
+        if getattr(args, k) is None:
+            setattr(args, k, v)
+
+######################################################################
+
 
 def log_string(s):
     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
@@ -124,10 +175,27 @@ for n in vars(args):
 ######################################################################
 
 
+# ra_mask is boolean, with 1s on the values to generate
+
+
 def masked_inplace_autoregression(
-    model, batch_size, input, ar_mask, forbidden_tokens=None, device=torch.device("cpu")
+    model,
+    batch_size,
+    input,
+    ar_mask,
+    forbidden_tokens=None,
+    progress_bar_desc="autoregression",
+    device=torch.device("cpu"),
 ):
-    for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
+    batches = zip(input.split(batch_size), ar_mask.split(batch_size))
+    if progress_bar_desc is not None:
+        tqdm.tqdm(
+            batches,
+            dynamic_ncols=True,
+            desc=progress_bar_desc,
+            total=input.size(0) // batch_size,
+        )
+    for input, ar_mask in batches:
         i = (ar_mask.sum(0) > 0).nonzero()
         if i.min() > 0:
             model(
@@ -263,6 +331,7 @@ class TaskPicoCLVR(Task):
                 input,
                 ar_masks,
                 forbidden_tokens,
+                progress_bar_desc=None,
                 device=self.device,
             )
             model.train(t)
@@ -311,8 +380,12 @@ class TaskPicoCLVR(Task):
             "rng_state": list(torch.get_rng_state()),
         }
 
-        log_string(f"generating {nb_train_samples+nb_test_samples} samples (can take some time)")
-        self.train_descr = generate_descr(nb_train_samples, "train", pruner=self.pruner_train)
+        log_string(
+            f"generating {nb_train_samples+nb_test_samples} samples (can take some time)"
+        )
+        self.train_descr = generate_descr(
+            nb_train_samples, "train", pruner=self.pruner_train
+        )
         self.test_descr = generate_descr(nb_test_samples, "test", pruner=None)
 
         # Build the tokenizer
@@ -436,7 +509,7 @@ class TaskPicoCLVR(Task):
                     0,
                 )
 
-        image_name = os.path.join(args.result_dir, f"result_{n_epoch:04d}.png")
+        image_name = os.path.join(args.result_dir, f"picoclvr_result_{n_epoch:04d}.png")
         torchvision.utils.save_image(
             img / 255.0, image_name, nrow=nb_per_primer, padding=1, pad_value=1.0
         )
@@ -445,29 +518,380 @@ class TaskPicoCLVR(Task):
 
 ######################################################################
 
-log_string(f"device {device}")
 
+class TaskMNIST(Task):
+    def __init__(self, batch_size, device=torch.device("cpu")):
+        self.device = device
+        self.batch_size = batch_size
+
+    def batches(self, split="train"):
+        assert split in {"train", "test"}
+        data_set = torchvision.datasets.MNIST(
+            root="./data", train=(split == "train"), download=True
+        )
+        data_input = data_set.data.view(-1, 28 * 28).long()
+        if args.nb_train_samples is not None:
+            data_input = data_input[: args.nb_train_samples]
+        for batch in tqdm.tqdm(
+            data_input.split(self.batch_size), desc=f"epoch-{split}"
+        ):
+            yield batch
+
+    def vocabulary_size(self):
+        return 256
+
+    def produce_results(self, n_epoch, model):
+        results = torch.empty(64, 28 * 28, device=self.device, dtype=torch.int64)
+        ar_mask = torch.full_like(results, 1)
+        masked_inplace_autoregression(
+            model, self.batch_size, results, ar_mask, device=self.device
+        )
+        image_name = os.path.join(args.result_dir, f"mnist_result_{n_epoch:04d}.png")
+        torchvision.utils.save_image(
+            1 - results.reshape(-1, 1, 28, 28) / 255.0,
+            image_name,
+            nrow=16,
+            pad_value=0.8,
+        )
+        log_string(f"wrote {image_name}")
+
+
+######################################################################
 
-def pruner_horizontal_green(p):
+import maze
+
+
+class TaskMaze(Task):
+    def map2seq(self, *m):
+        return torch.cat([x.flatten(1) for x in m], 1)
+
+    def seq2map(self, s):
+        s = s.reshape(s.size(0), -1, self.height, self.width)
+        return (s[:, k] for k in range(s.size(1)))
+
+    def __init__(
+        self,
+        nb_train_samples,
+        nb_test_samples,
+        batch_size,
+        height,
+        width,
+        nb_walls,
+        device=torch.device("cpu"),
+    ):
+        self.batch_size = batch_size
+        self.height = height
+        self.width = width
+        self.device = device
+
+        train_mazes, train_paths, _ = maze.create_maze_data(
+            nb_train_samples,
+            height=height,
+            width=width,
+            nb_walls=nb_walls,
+            progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
+        )
+        self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
+
+        test_mazes, test_paths, _ = maze.create_maze_data(
+            nb_test_samples,
+            height=height,
+            width=width,
+            nb_walls=nb_walls,
+            progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
+        )
+        self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
+
+        self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
+
+    def batches(self, split="train", nb_to_use=-1, desc=None):
+        assert split in {"train", "test"}
+        input = self.train_input if split == "train" else self.test_input
+        if nb_to_use > 0:
+            input = input[:nb_to_use]
+        if desc is None:
+            desc = f"epoch-{split}"
+        for batch in tqdm.tqdm(
+            input.split(self.batch_size), dynamic_ncols=True, desc=desc
+        ):
+            yield batch
+
+    def vocabulary_size(self):
+        return self.nb_codes
+
+    def compute_error(self, model, split="train", nb_to_use=-1):
+        nb_total, nb_correct = 0, 0
+        count = torch.zeros(
+            self.width * self.height, self.width * self.height, device=self.device
+        )
+        for input in task.batches(split, nb_to_use):
+            result = input.clone()
+            ar_mask = result.new_zeros(result.size())
+            ar_mask[:, self.height * self.width :] = 1
+            result *= 1 - ar_mask
+            masked_inplace_autoregression(
+                model, self.batch_size, result, ar_mask, device=self.device
+            )
+            mazes, paths = self.seq2map(result)
+            path_correctness = maze.path_correctness(mazes, paths)
+            nb_correct += path_correctness.long().sum()
+            nb_total += mazes.size(0)
+
+            optimal_path_lengths = (
+                (input[:, self.height * self.width :] == maze.v_path).long().sum(1)
+            )
+            predicted_path_lengths = (
+                (result[:, self.height * self.width :] == maze.v_path).long().sum(1)
+            )
+            optimal_path_lengths = optimal_path_lengths[path_correctness]
+            predicted_path_lengths = predicted_path_lengths[path_correctness]
+            count[optimal_path_lengths, predicted_path_lengths] += 1
+
+        if count.max() == 0:
+            count = None
+        else:
+            count = count[
+                : count.sum(1).nonzero().max() + 1, : count.sum(0).nonzero().max() + 1
+            ]
+
+        return nb_total, nb_correct, count
+
+    def produce_results(self, n_epoch, model):
+        with torch.autograd.no_grad():
+            t = model.training
+            model.eval()
+
+            train_nb_total, train_nb_correct, count = self.compute_error(
+                model, "train", nb_to_use=1000
+            )
+            log_string(
+                f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
+            )
+
+            test_nb_total, test_nb_correct, count = self.compute_error(
+                model, "test", nb_to_use=1000
+            )
+            log_string(
+                f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+            )
+
+            if count is not None:
+                with open(
+                    os.path.join(args.result_dir, f"maze_result_{n_epoch:04d}.txt"), "w"
+                ) as f:
+                    for i in range(count.size(0)):
+                        for j in range(count.size(1)):
+                            eol = " " if j < count.size(1) - 1 else "\n"
+                            f.write(f"{count[i,j]}{eol}")
+
+            input = self.test_input[:48]
+            result = input.clone()
+            ar_mask = result.new_zeros(result.size())
+            ar_mask[:, self.height * self.width :] = 1
+            result *= 1 - ar_mask
+            masked_inplace_autoregression(
+                model, self.batch_size, result, ar_mask, device=self.device
+            )
+
+            mazes, paths = self.seq2map(input)
+            _, predicted_paths = self.seq2map(result)
+
+            filename = os.path.join(args.result_dir, f"maze_result_{n_epoch:04d}.png")
+            maze.save_image(
+                filename,
+                mazes=mazes,
+                target_paths=paths,
+                predicted_paths=predicted_paths,
+                path_correct=maze.path_correctness(mazes, predicted_paths),
+            )
+            log_string(f"wrote {filename}")
+
+            model.train(t)
+
+
+######################################################################
+
+
+import snake
+
+
+class TaskSnake(Task):
+    def __init__(
+        self,
+        nb_train_samples,
+        nb_test_samples,
+        batch_size,
+        height,
+        width,
+        nb_colors,
+        length,
+        prompt_length,
+        device=torch.device("cpu"),
+    ):
+        self.batch_size = batch_size
+        self.height = height
+        self.width = width
+        self.device = device
+        self.prompt_length = prompt_length
+
+        self.train_input, self.train_prior_visits, _, _ = snake.generate_sequences(
+            nb_train_samples,
+            height,
+            width,
+            nb_colors,
+            length,
+            prompt_length,
+            self.device,
+        )
+        self.test_input, self.test_prior_visits, _, _ = snake.generate_sequences(
+            nb_test_samples,
+            height,
+            width,
+            nb_colors,
+            length,
+            prompt_length,
+            self.device,
+        )
+
+        self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
+
+    def batches(self, split="train", nb_to_use=-1, desc=None):
+        assert split in {"train", "test"}
+        input = self.train_input if split == "train" else self.test_input
+        if nb_to_use > 0:
+            input = input[:nb_to_use]
+        if desc is None:
+            desc = f"epoch-{split}"
+        for batch in tqdm.tqdm(
+            input.split(self.batch_size), dynamic_ncols=True, desc=desc
+        ):
+            yield batch
+
+    def vocabulary_size(self):
+        return self.nb_codes
+
+    def produce_results(self, n_epoch, model):
+        with torch.autograd.no_grad():
+            t = model.training
+            model.eval()
+
+            def compute_nb_correct(input, prior_visits):
+                result = input.clone()
+                i = torch.arange(result.size(1), device=result.device)[None, :]
+                ar_mask = (
+                    torch.logical_and(i >= self.prompt_length * 2, i % 2 == 0)
+                    .long()
+                    .expand_as(result)
+                )
+                result *= 1 - ar_mask
+
+                # snake.solver(result,ar_mask)
+
+                masked_inplace_autoregression(
+                    model, self.batch_size, result, ar_mask, device=self.device
+                )
+
+                nb_total = ((prior_visits > 0) * ar_mask).sum()
+
+                nb_correct = (
+                    (result == input).long() * (prior_visits > 0) * ar_mask
+                ).sum()
+
+                # nb_total = result.size(0)
+                # nb_correct = ((result - input).abs().sum(1) == 0).sum()
+
+                return nb_total, nb_correct
+
+            # train_nb_total, train_nb_correct = compute_nb_correct(
+            # self.train_input, self.train_prior_visits
+            # )
+
+            # log_string(
+            # f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
+            # )
+
+            test_nb_total, test_nb_correct = compute_nb_correct(
+                self.test_input[:1000], self.test_prior_visits[:1000]
+            )
+
+            log_string(
+                f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
+            )
+
+            model.train(t)
+
+
+######################################################################
+
+
+def picoclvr_pruner_horizontal_green(p):
     return not ("green" in p and ("left" in p or "right" in p))
 
 
-task = TaskPicoCLVR(
-    nb_train_samples=args.nb_train_samples,
-    nb_test_samples=args.nb_test_samples,
-    batch_size=args.batch_size,
-    height=args.height,
-    width=args.width,
-    nb_colors=args.nb_colors,
-    device=device,
-    pruner_train=pruner_horizontal_green
-    if args.prune_properties in {"train+eval"}
-    else None,
-    pruner_eval=(lambda p: not pruner_horizontal_green(p))
-    if args.prune_properties in {"train+eval", "eval"}
-    else None,
+picoclvr_pruner_train = (
+    picoclvr_pruner_horizontal_green
+    if args.picocvlr_prune_properties in {"train+eval"}
+    else None
+)
+
+picoclvr_pruner_eval = (
+    (lambda p: not picoclvr_pruner_horizontal_green(p))
+    if args.picocvlr_prune_properties in {"train+eval", "eval"}
+    else None
 )
 
+######################################################################
+
+if args.task == "picoclvr":
+    task = TaskPicoCLVR(
+        nb_train_samples=args.nb_train_samples,
+        nb_test_samples=args.nb_test_samples,
+        batch_size=args.batch_size,
+        height=args.picoclvr_height,
+        width=args.picoclvr_width,
+        nb_colors=args.picoclvr_nb_colors,
+        device=device,
+        pruner_train=picoclvr_pruner_train,
+        pruner_eval=picoclvr_pruner_eval,
+    )
+
+elif args.task == "mnist":
+    task = TaskMNIST(
+        batch_size=args.batch_size,
+        device=device,
+    )
+
+elif args.task == "maze":
+    task = TaskMaze(
+        nb_train_samples=args.nb_train_samples,
+        nb_test_samples=args.nb_test_samples,
+        batch_size=args.batch_size,
+        height=args.maze_height,
+        width=args.maze_width,
+        nb_walls=args.maze_nb_walls,
+        device=device,
+    )
+
+elif args.task == "snake":
+    task = TaskSnake(
+        nb_train_samples=args.nb_train_samples,
+        nb_test_samples=args.nb_test_samples,
+        batch_size=args.batch_size,
+        height=args.snake_height,
+        width=args.snake_width,
+        nb_colors=args.snake_nb_colors,
+        length=args.snake_length,
+        prompt_length=args.snake_length // 2,
+        device=device,
+    )
+
+else:
+    raise ValueError(f"Unknown task {args.task}")
+
+######################################################################
+
+log_string(f"device {device}")
+
 vocabulary_size = task.vocabulary_size()
 
 log_string(f"vocabulary_size {vocabulary_size}")
@@ -596,9 +1020,6 @@ for n_epoch in range(nb_epochs_finished, nb_epochs):
         for input in task.batches(split="test"):
             input = input.to(device)
 
-            # input, loss_masks, true_images = task.excise_last_image(input)
-            # input, loss_masks = task.add_true_image(input, true_images, loss_masks)
-
             output = model(mygpt.BracketedSequence(input)).x
             loss = F.cross_entropy(output.transpose(1, 2), input)
             acc_test_loss += loss.item() * input.size(0)