Merge branch 'dev'
[culture.git] / grids.py
index ed72099..0564f3b 100755 (executable)
--- a/grids.py
+++ b/grids.py
@@ -5,7 +5,7 @@
 
 # Written by Francois Fleuret <francois@fleuret.org>
 
-import math, sys, tqdm, os, warnings
+import math, sys, tqdm, os, warnings, cairo
 
 import torch, torchvision
 
@@ -14,9 +14,125 @@ from torch.nn import functional as F
 
 ######################################################################
 
+
+def text_img(height, width, text):
+    pixel_map = torch.full((height, width, 4), 255, dtype=torch.uint8)
+
+    surface = cairo.ImageSurface.create_for_data(
+        pixel_map.numpy(), cairo.FORMAT_ARGB32, pixel_map.size(1), pixel_map.size(0)
+    )
+
+    ctx = cairo.Context(surface)
+    ctx.set_source_rgb(0, 0, 0)
+    ctx.set_font_size(16)
+    ctx.select_font_face("courier", cairo.FONT_SLANT_NORMAL, cairo.FONT_WEIGHT_NORMAL)
+    y = None
+    for line in text.split("\n"):
+        xbearing, ybearing, width, height, dx, dy = ctx.text_extents(line)
+        if y is None:
+            y = height * 1.5
+            x = height * 0.5
+
+        ctx.move_to(x, y)
+        ctx.show_text(line)
+        y += height * 1.5
+
+    ctx.stroke()
+
+    return pixel_map.permute(2, 0, 1)[None, :3].contiguous()
+
+
+######################################################################
+
 import problem
 
 
+def grow_islands(nb, height, width, nb_seeds, nb_iterations):
+    w = torch.empty(5, 1, 3, 3)
+
+    w[0, 0] = torch.tensor(
+        [
+            [1.0, 1.0, 1.0],
+            [1.0, 0.0, 1.0],
+            [1.0, 1.0, 1.0],
+        ]
+    )
+
+    w[1, 0] = torch.tensor(
+        [
+            [-1.0, 1.0, 0.0],
+            [1.0, 0.0, 0.0],
+            [0.0, 0.0, 0.0],
+        ]
+    )
+
+    w[2, 0] = torch.tensor(
+        [
+            [0.0, 1.0, -1.0],
+            [0.0, 0.0, 1.0],
+            [0.0, 0.0, 0.0],
+        ]
+    )
+
+    w[3, 0] = torch.tensor(
+        [
+            [0.0, 0.0, 0.0],
+            [0.0, 0.0, 1.0],
+            [0.0, 1.0, -1.0],
+        ]
+    )
+
+    w[4, 0] = torch.tensor(
+        [
+            [0.0, 0.0, 0.0],
+            [1.0, 0.0, 0.0],
+            [-1.0, 1.0, 0.0],
+        ]
+    )
+
+    Z = torch.zeros(nb, height, width)
+    U = Z.flatten(1)
+
+    for _ in range(nb_seeds):
+        M = F.conv2d(Z[:, None, :, :], w, padding=1)
+        M = torch.cat([M[:, :1], M[:, 1:].min(dim=1, keepdim=True).values], dim=1)
+        M = ((M[:, 0] == 0) & (Z == 0)).long()
+        Q = (M.flatten(1).max(dim=1).values > 0).long()[:, None]
+        M = M * torch.rand(M.size())
+        M = M.flatten(1)
+        M = F.one_hot(M.argmax(dim=1), num_classes=M.size(1))
+        U += M * Q
+
+    for _ in range(nb_iterations):
+        M = F.conv2d(Z[:, None, :, :], w, padding=1)
+        M = torch.cat([M[:, :1], M[:, 1:].min(dim=1, keepdim=True).values], dim=1)
+        M = ((M[:, 1] >= 0) & (Z == 0)).long()
+        Q = (M.flatten(1).max(dim=1).values > 0).long()[:, None]
+        M = M * torch.rand(M.size())
+        M = M.flatten(1)
+        M = F.one_hot(M.argmax(dim=1), num_classes=M.size(1))
+        U = Z.flatten(1)
+        U += M * Q
+
+    M = Z.clone()
+    Z = Z * (torch.arange(Z.size(1) * Z.size(2)) + 1).reshape(1, Z.size(1), Z.size(2))
+
+    while True:
+        W = Z.clone()
+        Z = F.max_pool2d(Z, 3, 1, 1) * M
+        if Z.equal(W):
+            break
+
+    Z = Z.long()
+    U = Z.flatten(1)
+    V = F.one_hot(U).max(dim=1).values
+    W = V.cumsum(dim=1) - V
+    N = torch.arange(Z.size(0))[:, None, None].expand_as(Z)
+    Z = W[N, Z]
+
+    return Z
+
+
 class Grids(problem.Problem):
     named_colors = [
         ("white", [255, 255, 255]),
@@ -32,156 +148,295 @@ class Grids(problem.Problem):
         ("gray", [128, 128, 128]),
     ]
 
-    def __init__(self, device=torch.device("cpu")):
+    def check_structure(self, quizzes, struct):
+        S = self.height * self.width
+
+        return (
+            (quizzes[:, 0 * (S + 1)] == self.l2tok[struct[0]])
+            & (quizzes[:, 1 * (S + 1)] == self.l2tok[struct[1]])
+            & (quizzes[:, 2 * (S + 1)] == self.l2tok[struct[2]])
+            & (quizzes[:, 3 * (S + 1)] == self.l2tok[struct[3]])
+        ).all()
+
+    def get_structure(self, quizzes):
+        S = self.height * self.width
+        struct = tuple(
+            self.tok2l[n.item()]
+            for n in quizzes.reshape(quizzes.size(0), 4, S + 1)[0, :, 0]
+        )
+        self.check_structure(quizzes, struct)
+        return struct
+
+    def inject_noise(self, quizzes, noise, struct, mask):
+        assert self.check_structure(quizzes, struct=struct)
+        S = self.height * self.width
+
+        mask = torch.tensor(mask, device=quizzes.device)
+        mask = mask[None, :, None].expand(1, 4, S + 1).clone()
+        mask[:, :, 0] = 0
+        mask = mask.reshape(1, -1).expand_as(quizzes)
+        mask = mask * (torch.rand(mask.size(), device=mask.device) <= noise).long()
+        random = torch.randint(self.nb_colors, mask.size())
+        quizzes = mask * random + (1 - mask) * quizzes
+
+        return quizzes
+
+    # What a mess
+    def reconfigure(self, quizzes, struct=("A", "f_A", "B", "f_B")):
+        if torch.is_tensor(quizzes):
+            return self.reconfigure([quizzes], struct=struct)[0]
+
+        S = self.height * self.width
+        result = [x.new(x.size()) for x in quizzes]
+
+        struct_from = self.get_structure(quizzes[0][:1])
+        i = self.indices_select(quizzes[0], struct_from)
+
+        sf = dict((l, n) for n, l in enumerate(struct_from))
+
+        for q in range(4):
+            k = sf[struct[q]]
+            for x, y in zip(quizzes, result):
+                l = x.size(1) // 4
+                y[i, q * l : (q + 1) * l] = x[i, k * l : (k + 1) * l]
+
+        j = i == False
+
+        if j.any():
+            for z, y in zip(
+                self.reconfigure([x[j] for x in quizzes], struct=struct), result
+            ):
+                y[j] = z
+
+        return result
+
+    def trivial(self, quizzes):
+        S = self.height * self.width
+        assert self.check_structure(quizzes, struct=("A", "f_A", "B", "f_B"))
+        a = quizzes.reshape(quizzes.size(0), 4, S + 1)[:, :, 1:]
+        return (a[:, 0] == a[:, 1]).min(dim=1).values | (a[:, 2] == a[:, 3]).min(
+            dim=1
+        ).values
+
+    def make_quiz_mask(
+        self, quizzes, struct=("A", "f_A", "B", "f_B"), mask=(0, 0, 0, 1)
+    ):
+        assert self.check_structure(quizzes, struct)
+
+        ar_mask = quizzes.new_zeros(quizzes.size())
+
+        S = self.height * self.width
+        a = ar_mask.reshape(ar_mask.size(0), 4, S + 1)[:, :, 1:]
+        a[:, 0, :] = mask[0]
+        a[:, 1, :] = mask[1]
+        a[:, 2, :] = mask[2]
+        a[:, 3, :] = mask[3]
+
+        return ar_mask
+
+    def indices_select(self, quizzes, struct=("A", "f_A", "B", "f_B")):
+        S = self.height * self.width
+        q = quizzes.reshape(quizzes.size(0), 4, S + 1)
+        return (
+            (q[:, 0, 0] == self.l2tok[struct[0]])
+            & (q[:, 1, 0] == self.l2tok[struct[1]])
+            & (q[:, 2, 0] == self.l2tok[struct[2]])
+            & (q[:, 3, 0] == self.l2tok[struct[3]])
+        )
+
+    def __init__(
+        self,
+        max_nb_cached_chunks=None,
+        chunk_size=None,
+        nb_threads=-1,
+        tasks=None,
+    ):
         self.colors = torch.tensor([c for _, c in self.named_colors])
+
+        self.nb_colors = len(self.colors)
+        self.token_A = self.nb_colors
+        self.token_f_A = self.token_A + 1
+        self.token_B = self.token_f_A + 1
+        self.token_f_B = self.token_B + 1
+
+        self.nb_rec_max = 5
+        self.rfree = torch.tensor([])
+
+        self.l2tok = {
+            "A": self.token_A,
+            "f_A": self.token_f_A,
+            "B": self.token_B,
+            "f_B": self.token_f_B,
+        }
+
+        self.tok2l = {
+            self.token_A: "A",
+            self.token_f_A: "f_A",
+            self.token_B: "B",
+            self.token_f_B: "f_B",
+        }
+
         self.height = 10
         self.width = 10
-        self.device = device
+        self.seq_len = 4 * (1 + self.height * self.width)
+        self.nb_token_values = self.token_f_B + 1
+
+        self.cache_rec_coo = {}
+
+        all_tasks = [
+            self.task_replace_color,
+            self.task_translate,
+            self.task_grow,
+            self.task_half_fill,
+            self.task_frame,
+            self.task_detect,
+            self.task_scale,
+            self.task_symbols,
+            self.task_corners,
+            self.task_contact,
+            self.task_path,
+            self.task_fill,
+            ############################################ hard ones
+            self.task_isometry,
+            self.task_trajectory,
+            self.task_bounce,
+            # self.task_count, # NOT REVERSIBLE
+            # self.task_islands, # TOO MESSY
+        ]
+
+        if tasks is None:
+            self.all_tasks = all_tasks
+        else:
+            self.all_tasks = [getattr(self, "task_" + t) for t in tasks.split(",")]
+
+        super().__init__(max_nb_cached_chunks, chunk_size, nb_threads)
 
     ######################################################################
 
-    def frame2img(self, x, scale=15):
-        x = x.reshape(x.size(0), self.height, -1)
-        m = torch.logical_and(x >= 0, x < self.nb_token_values()).long()
-        x = self.colors[x * m].permute(0, 3, 1, 2)
-        s = x.shape
-        x = x[:, :, :, None, :, None].expand(-1, -1, -1, scale, -1, scale)
-        x = x.reshape(s[0], s[1], s[2] * scale, s[3] * scale)
+    def grid2img(self, x, scale=15):
+        m = torch.logical_and(x >= 0, x < self.nb_colors).long()
+        y = self.colors[x * m].permute(0, 3, 1, 2)
+        s = y.shape
+        y = y[:, :, :, None, :, None].expand(-1, -1, -1, scale, -1, scale)
+        y = y.reshape(s[0], s[1], s[2] * scale, s[3] * scale)
 
-        x[:, :, :, torch.arange(0, x.size(3), scale)] = 0
-        x[:, :, torch.arange(0, x.size(2), scale), :] = 0
-        x = x[:, :, 1:, 1:]
+        y[:, :, :, torch.arange(0, y.size(3), scale)] = 64
+        y[:, :, torch.arange(0, y.size(2), scale), :] = 64
 
         for n in range(m.size(0)):
             for i in range(m.size(1)):
                 for j in range(m.size(2)):
                     if m[n, i, j] == 0:
-                        for k in range(2, scale - 2):
-                            for l in [0, 1]:
-                                x[n, :, i * scale + k, j * scale + k - l] = 0
-                                x[
-                                    n, :, i * scale + scale - 1 - k, j * scale + k - l
-                                ] = 0
+                        for k in range(3, scale - 2):
+                            y[n, :, i * scale + k, j * scale + k] = 0
+                            y[n, :, i * scale + k, j * scale + scale - k] = 0
+
+        y = y[:, :, 1:, 1:]
+
+        return y
 
-        return x
+    def add_frame(self, img, colors, thickness):
+        result = img.new(
+            img.size(0),
+            img.size(1),
+            img.size(2) + 2 * thickness,
+            img.size(3) + 2 * thickness,
+        )
+
+        result[...] = colors[:, :, None, None]
+        result[:, :, thickness:-thickness, thickness:-thickness] = img
 
-    def save_image(
+        return result
+
+    def save_quizzes_as_image(
         self,
         result_dir,
         filename,
-        prompts,
-        answers,
-        predicted_prompts=None,
-        predicted_answers=None,
+        quizzes,
+        predicted_parts=None,
+        correct_parts=None,
+        comments=None,
+        comment_height=48,
         nrow=4,
+        margin=8,
     ):
-        S = self.height * self.width
-        As = prompts[:, 0 * (S + 1) : 0 * (S + 1) + S].view(-1, self.height, self.width)
-        f_As = prompts[:, 1 * (S + 1) : 1 * (S + 1) + S].view(
-            -1, self.height, self.width
-        )
-        Bs = prompts[:, 2 * (S + 1) : 2 * (S + 1) + S].view(-1, self.height, self.width)
-        prompts = torch.cat([As, f_As, Bs], dim=2)
-        answers = answers.reshape(answers.size(0), self.height, self.width)
+        quizzes = quizzes.to("cpu")
 
-        if predicted_prompts is None:
-            predicted_prompts = 255
-
-        if predicted_answers is None:
-            predicted_answers = 255
-
-        def add_frame(x, c, margin, bottom=False):
-            if bottom:
-                h, w, di, dj = x.size(2) + margin, x.size(3), 0, 0
-            else:
-                h, w, di, dj = (
-                    x.size(2) + 2 * margin,
-                    x.size(3) + 2 * margin,
-                    margin,
-                    margin,
-                )
-
-            y = x.new_full((x.size(0), x.size(1), h, w), 0)
-
-            if type(c) is int:
-                y[...] = c
-            else:
-                c = c.long()[:, None]
-                c = (
-                    (1 - ((c == 1).long() + (c == 0).long() + (c == -1).long()))
-                    * torch.tensor([64, 64, 64], device=c.device)
-                    + (c == 1).long() * torch.tensor([0, 255, 0], device=c.device)
-                    + (c == 0).long() * torch.tensor([255, 255, 255], device=c.device)
-                    + (c == -1).long() * torch.tensor([255, 0, 0], device=c.device)
-                )
-                y[...] = c[:, :, None, None]
+        to_reconfigure = [quizzes]
+        if predicted_parts is not None:
+            to_reconfigure.append(predicted_parts)
+        if correct_parts is not None:
+            to_reconfigure.append(correct_parts)
 
-            y[:, :, di : di + x.size(2), dj : dj + x.size(3)] = x
+        to_reconfigure = self.reconfigure(to_reconfigure, ("A", "f_A", "B", "f_B"))
 
-            return y
+        quizzes = to_reconfigure.pop(0)
+        if predicted_parts is not None:
+            predicted_parts = to_reconfigure.pop(0)
+        if correct_parts is not None:
+            correct_parts = to_reconfigure.pop(0)
 
-        margin = 8
+        S = self.height * self.width
 
-        img_prompts = torch.cat(
-            [
-                add_frame(
-                    add_frame(self.frame2img(x), c=0, margin=1),
-                    c=predicted_prompts,
-                    margin=margin,
-                )
-                for x in prompts.to("cpu").split(split_size=self.width, dim=2)
-            ],
-            dim=3,
+        A, f_A, B, f_B = (
+            quizzes.reshape(quizzes.size(0), 4, S + 1)[:, :, 1:]
+            .reshape(quizzes.size(0), 4, self.height, self.width)
+            .permute(1, 0, 2, 3)
         )
 
-        h = img_prompts.size(2)
-        img_answers = add_frame(
-            add_frame(self.frame2img(answers.to("cpu")), c=0, margin=1),
-            c=predicted_answers,
-            margin=margin,
+        frame, white, gray, green, red = torch.tensor(
+            [[64, 64, 64], [255, 255, 255], [200, 200, 200], [0, 255, 0], [255, 0, 0]],
+            device=quizzes.device,
         )
 
-        separator_size = 2 * margin
-
-        separator = img_prompts.new_full(
-            (
-                img_prompts.size(0),
-                img_prompts.size(1),
-                img_prompts.size(2),
-                separator_size,
-            ),
-            255,
-        )
+        img_A = self.add_frame(self.grid2img(A), frame[None, :], thickness=1)
+        img_f_A = self.add_frame(self.grid2img(f_A), frame[None, :], thickness=1)
+        img_B = self.add_frame(self.grid2img(B), frame[None, :], thickness=1)
+        img_f_B = self.add_frame(self.grid2img(f_B), frame[None, :], thickness=1)
+
+        # predicted_parts Nx4
+        # correct_parts Nx4
+
+        if predicted_parts is None:
+            colors = white[None, None, :].expand(-1, 4, -1)
+        else:
+            predicted_parts = predicted_parts.to("cpu")
+            if correct_parts is None:
+                colors = (
+                    predicted_parts[:, :, None] * gray[None, None, :]
+                    + (1 - predicted_parts[:, :, None]) * white[None, None, :]
+                )
+            else:
+                correct_parts = correct_parts.to("cpu")
+                colors = (
+                    predicted_parts[:, :, None]
+                    * (
+                        (correct_parts[:, :, None] == 1).long() * green[None, None, :]
+                        + (correct_parts[:, :, None] == 0).long() * gray[None, None, :]
+                        + (correct_parts[:, :, None] == -1).long() * red[None, None, :]
+                    )
+                    + (1 - predicted_parts[:, :, None]) * white[None, None, :]
+                )
 
-        marker = img_prompts.new_full(
-            (
-                img_prompts.size(0),
-                img_prompts.size(1),
-                img_prompts.size(2),
-                separator_size,
-            ),
-            255,
-        )
+        img_A = self.add_frame(img_A, colors[:, 0], thickness=8)
+        img_f_A = self.add_frame(img_f_A, colors[:, 1], thickness=8)
+        img_B = self.add_frame(img_B, colors[:, 2], thickness=8)
+        img_f_B = self.add_frame(img_f_B, colors[:, 3], thickness=8)
 
-        # marker[:, :, 0] = 0
-        # marker[:, :, h - 1] = 0
+        img_A = self.add_frame(img_A, white[None, :], thickness=2)
+        img_f_A = self.add_frame(img_f_A, white[None, :], thickness=2)
+        img_B = self.add_frame(img_B, white[None, :], thickness=2)
+        img_f_B = self.add_frame(img_f_B, white[None, :], thickness=2)
 
-        for k in range(1, 2 * separator_size - 8):
-            i = k - (separator_size - 4)
-            j = separator_size - 5 - abs(i)
-            marker[:, :, h // 2 - 1 + i, 2 + j] = 0
-            marker[:, :, h // 2 - 1 + i + 1, 2 + j] = 0
+        img = torch.cat([img_A, img_f_A, img_B, img_f_B], dim=3)
 
-        img = torch.cat(
-            [
-                img_prompts,
-                marker,
-                img_answers,
-            ],
-            dim=3,
-        )
+        if comments is not None:
+            comment_img = [text_img(comment_height, img.size(3), t) for t in comments]
+            comment_img = torch.cat(comment_img, dim=0)
+            img = torch.cat([img, comment_img], dim=2)
 
         image_name = os.path.join(result_dir, filename)
+
         torchvision.utils.save_image(
             img.float() / 255.0,
             image_name,
@@ -192,115 +447,260 @@ class Grids(problem.Problem):
 
     ######################################################################
 
-    def nb_token_values(self):
-        return len(self.colors)
+    # @torch.compile
+    def rec_coo(
+        self,
+        nb_rec,
+        min_height=3,
+        min_width=3,
+        surface_max=None,
+        prevent_overlap=False,
+    ):
+        if surface_max is None:
+            surface_max = self.height * self.width // 2
+
+        signature = (nb_rec, min_height, min_width, surface_max)
 
-    # That's quite a tensorial spaghetti mess to sample
-    # non-overlapping rectangles quickly, but made the generation of
-    # 100k samples go from 1h50 with a lame pure python code to 3min30s
-    # with this one.
-    def rec_coo(self, nb_rec, min_height=3, min_width=3):
-        nb_trials = 200
+        try:
+            return self.cache_rec_coo[signature].pop()
+        except IndexError:
+            pass
+        except KeyError:
+            pass
 
+        N = 10000
         while True:
-            v = (
+            while True:
+                i = torch.randint(self.height, (N * nb_rec, 2)).sort(dim=-1).values
+                j = torch.randint(self.width, (N * nb_rec, 2)).sort(dim=-1).values
+                i[:, 1] += 1
+                j[:, 1] += 1
+                big_enough = (
+                    (i[:, 1] >= i[:, 0] + min_height)
+                    & (j[:, 1] >= j[:, 0] + min_height)
+                    & ((i[:, 1] - i[:, 0]) * (j[:, 1] - j[:, 0]) <= surface_max)
+                )
+
+                i, j = i[big_enough], j[big_enough]
+
+                n = i.size(0) - i.size(0) % nb_rec
+
+                if n > 0:
+                    break
+
+            i = i[:n].reshape(n // nb_rec, nb_rec, -1)
+            j = j[:n].reshape(n // nb_rec, nb_rec, -1)
+
+            if prevent_overlap:
+                can_fit = ((i[:, :, 1] - i[:, :, 0]) * (j[:, :, 1] - j[:, :, 0])).sum(
+                    dim=-1
+                ) <= self.height * self.width
+                i, j = i[can_fit], j[can_fit]
+                if nb_rec == 2:
+                    A_i1, A_i2, A_j1, A_j2 = (
+                        i[:, 0, 0],
+                        i[:, 0, 1],
+                        j[:, 0, 0],
+                        j[:, 0, 1],
+                    )
+                    B_i1, B_i2, B_j1, B_j2 = (
+                        i[:, 1, 0],
+                        i[:, 1, 1],
+                        j[:, 1, 0],
+                        j[:, 1, 1],
+                    )
+                    no_overlap = (
+                        (A_i1 >= B_i2)
+                        | (A_i2 <= B_i1)
+                        | (A_j1 >= B_j2)
+                        | (A_j2 <= B_j1)
+                    )
+                    i, j = (i[no_overlap], j[no_overlap])
+                elif nb_rec == 3:
+                    A_i1, A_i2, A_j1, A_j2 = (
+                        i[:, 0, 0],
+                        i[:, 0, 1],
+                        j[:, 0, 0],
+                        j[:, 0, 1],
+                    )
+                    B_i1, B_i2, B_j1, B_j2 = (
+                        i[:, 1, 0],
+                        i[:, 1, 1],
+                        j[:, 1, 0],
+                        j[:, 1, 1],
+                    )
+                    C_i1, C_i2, C_j1, C_j2 = (
+                        i[:, 2, 0],
+                        i[:, 2, 1],
+                        j[:, 2, 0],
+                        j[:, 2, 1],
+                    )
+                    no_overlap = (
+                        (
+                            (A_i1 >= B_i2)
+                            | (A_i2 <= B_i1)
+                            | (A_j1 >= B_j2)
+                            | (A_j2 <= B_j1)
+                        )
+                        & (
+                            (A_i1 >= C_i2)
+                            | (A_i2 <= C_i1)
+                            | (A_j1 >= C_j2)
+                            | (A_j2 <= C_j1)
+                        )
+                        & (
+                            (B_i1 >= C_i2)
+                            | (B_i2 <= C_i1)
+                            | (B_j1 >= C_j2)
+                            | (B_j2 <= C_j1)
+                        )
+                    )
+                    i, j = (i[no_overlap], j[no_overlap])
+                else:
+                    assert nb_rec == 1
+
+            if i.size(0) > 1:
+                break
+
+        self.cache_rec_coo[signature] = [
+            [
                 (
-                    torch.rand(nb_trials * nb_rec, self.height + 1, device=self.device)
-                    .sort(dim=-1)
-                    .indices
-                    < 2
+                    i[n, k, 0].item(),
+                    j[n, k, 0].item(),
+                    i[n, k, 1].item(),
+                    j[n, k, 1].item(),
                 )
-                .long()
-                .cumsum(dim=1)
-                == 1
-            ).long()
+                for k in range(nb_rec)
+            ]
+            for n in range(i.size(0))
+        ]
+
+        return self.cache_rec_coo[signature].pop()
+
+    ######################################################################
 
-            h = (
+    def contact_matrices(self, rn, ri, rj, rz):
+        n = torch.arange(self.nb_rec_max)
+        return (
+            (
                 (
-                    torch.rand(nb_trials * nb_rec, self.width + 1, device=self.device)
-                    .sort(dim=-1)
-                    .indices
-                    < 2
+                    (
+                        (ri[:, :, None, 0] == ri[:, None, :, 1] + 1)
+                        | (ri[:, :, None, 1] + 1 == ri[:, None, :, 0])
+                    )
+                    & (rj[:, :, None, 0] <= rj[:, None, :, 1])
+                    & (rj[:, :, None, 1] >= rj[:, None, :, 0])
                 )
-                .long()
-                .cumsum(dim=1)
-                == 1
-            ).long()
+                | (
+                    (
+                        (rj[:, :, None, 0] == rj[:, None, :, 1] + 1)
+                        | (rj[:, :, None, 1] + 1 == rj[:, None, :, 0])
+                    )
+                    & (ri[:, :, None, 0] <= ri[:, None, :, 1])
+                    & (ri[:, :, None, 1] >= ri[:, None, :, 0])
+                )
+            )
+            # & (rz[:, :, None] == rz[:, None, :])
+            & (n[None, :, None] < rn[:, None, None])
+            & (n[None, None, :] < n[None, :, None])
+        )
 
-            i = torch.logical_and(
-                v.sum(dim=-1) >= min_height, h.sum(dim=-1) >= min_width
+    def sample_rworld_states(self, N=1000):
+        while True:
+            ri = (
+                torch.randint(self.height - 2, (N, self.nb_rec_max, 2))
+                .sort(dim=2)
+                .values
+            )
+            ri[:, :, 1] += 2
+            rj = (
+                torch.randint(self.width - 2, (N, self.nb_rec_max, 2))
+                .sort(dim=2)
+                .values
+            )
+            rj[:, :, 1] += 2
+            rn = torch.randint(self.nb_rec_max - 1, (N,)) + 2
+            rz = torch.randint(2, (N, self.nb_rec_max))
+            rc = torch.randint(self.nb_colors - 1, (N, self.nb_rec_max)) + 1
+            n = torch.arange(self.nb_rec_max)
+            nb_collisions = (
+                (
+                    (ri[:, :, None, 0] <= ri[:, None, :, 1])
+                    & (ri[:, :, None, 1] >= ri[:, None, :, 0])
+                    & (rj[:, :, None, 0] <= rj[:, None, :, 1])
+                    & (rj[:, :, None, 1] >= rj[:, None, :, 0])
+                    & (rz[:, :, None] == rz[:, None, :])
+                    & (n[None, :, None] < rn[:, None, None])
+                    & (n[None, None, :] < n[None, :, None])
+                )
+                .long()
+                .flatten(1)
+                .sum(dim=1)
             )
 
-            v, h = v[i], h[i]
-            v = v[: v.size(0) - v.size(0) % nb_rec]
-            h = h[: h.size(0) - h.size(0) % nb_rec]
-            v = v.reshape(v.size(0) // nb_rec, nb_rec, -1)
-            h = h.reshape(h.size(0) // nb_rec, nb_rec, -1)
+            no_collision = nb_collisions == 0
 
-            r = v[:, :, :, None] * h[:, :, None, :]
+            if no_collision.any():
+                print(no_collision.long().sum() / N)
+                self.rn = rn[no_collision]
+                self.ri = ri[no_collision]
+                self.rj = rj[no_collision]
+                self.rz = rz[no_collision]
+                self.rc = rc[no_collision]
 
-            valid = r.sum(dim=1).flatten(1).max(dim=-1).values == 1
+                nb_contact = (
+                    self.contact_matrices(rn, ri, rj, rz).long().flatten(1).sum(dim=1)
+                )
 
-            v = v[valid]
-            h = h[valid]
+                self.rcontact = nb_contact > 0
+                self.rfree = torch.full((self.rn.size(0),), True)
 
-            if v.size(0) > 0:
                 break
 
-        av = torch.arange(v.size(2), device=self.device)[None, :]
-        ah = torch.arange(h.size(2), device=self.device)[None, :]
+    def get_recworld_state(self):
+        if not self.rfree.any():
+            self.sample_rworld_states()
+        k = torch.arange(self.rn.size(0))[self.rfree]
+        k = k[torch.randint(k.size(0), (1,))].item()
+        self.rfree[k] = False
+        return self.rn[k], self.ri[k], self.rj[k], self.rz[k], self.rc[k]
 
-        return [
-            (i1.item(), j1.item(), i2.item() + 1, j2.item() + 1)
-            for i1, j1, i2, j2 in zip(
-                v.size(2) - (v[0] * (v.size(2) - av)).max(dim=-1).values,
-                h.size(2) - (h[0] * (h.size(2) - ah)).max(dim=-1).values,
-                (v[0] * av).max(dim=-1).values,
-                (h[0] * ah).max(dim=-1).values,
-            )
-        ]
+    def draw_state(self, X, rn, ri, rj, rz, rc):
+        for n in sorted(list(range(rn)), key=lambda n: rz[n].item()):
+            X[ri[n, 0] : ri[n, 1] + 1, rj[n, 0] : rj[n, 1] + 1] = rc[n]
 
-    def rec_coo_(self, x, n, min_height=3, min_width=3):
-        collision = x.new(x.size())
-        while True:
-            collision[...] = 0
-            result = []
-            for _ in range(n):
-                while True:
-                    i1, i2 = torch.randint(x.size(0), (2,))
-                    if i1 + min_height <= i2:
-                        break
-                while True:
-                    j1, j2 = torch.randint(x.size(1), (2,))
-                    if j1 + min_width <= j2:
-                        break
-                collision[i1:i2, j1:j2] += 1
-                if collision.max() > 1:
-                    break
-                result.append((i1, j1, i2, j2))
-            if collision.max() == 1:
-                break
-        return result
+    def task_recworld_immobile(self, A, f_A, B, f_B):
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            rn, ri, rj, rz, rc = self.get_recworld_state()
+            self.draw_state(X, rn, ri, rj, rz, rc)
+            ri += 1
+            self.draw_state(f_X, rn, ri, rj, rz, rc)
 
     ######################################################################
 
+    # @torch.compile
     def task_replace_color(self, A, f_A, B, f_B):
         nb_rec = 3
-        c = torch.randperm(len(self.colors) - 1)[: nb_rec + 1] + 1
+        c = torch.randperm(self.nb_colors - 1)[: nb_rec + 1] + 1
         for X, f_X in [(A, f_A), (B, f_B)]:
-            r = self.rec_coo(nb_rec)
+            r = self.rec_coo(nb_rec, prevent_overlap=True)
             for n in range(nb_rec):
                 i1, j1, i2, j2 = r[n]
                 X[i1:i2, j1:j2] = c[n]
                 f_X[i1:i2, j1:j2] = c[n if n > 0 else -1]
 
+    # @torch.compile
     def task_translate(self, A, f_A, B, f_B):
-        di, dj = torch.randint(3, (2,)) - 1
+        while True:
+            di, dj = torch.randint(3, (2,)) - 1
+            if di.abs() + dj.abs() > 0:
+                break
+
         nb_rec = 3
-        c = torch.randperm(len(self.colors) - 1)[:nb_rec] + 1
+        c = torch.randperm(self.nb_colors - 1)[:nb_rec] + 1
         for X, f_X in [(A, f_A), (B, f_B)]:
             while True:
-                r = self.rec_coo(nb_rec)
+                r = self.rec_coo(nb_rec, prevent_overlap=True)
                 i1, j1, i2, j2 = r[nb_rec - 1]
                 if (
                     i1 + di >= 0
@@ -318,14 +718,15 @@ class Grids(problem.Problem):
                 else:
                     f_X[i1:i2, j1:j2] = c[n]
 
+    # @torch.compile
     def task_grow(self, A, f_A, B, f_B):
         di, dj = torch.randint(2, (2,)) * 2 - 1
         nb_rec = 3
-        c = torch.randperm(len(self.colors) - 1)[:nb_rec] + 1
-        direction = torch.randint(2, (1,))
+        c = torch.randperm(self.nb_colors - 1)[:nb_rec] + 1
+        direction = torch.randint(2, (1,)).item()
         for X, f_X in [(A, f_A), (B, f_B)]:
             while True:
-                r = self.rec_coo(nb_rec)
+                r = self.rec_coo(nb_rec, prevent_overlap=True)
                 i1, j1, i2, j2 = r[nb_rec - 1]
                 if i1 + 3 < i2 and j1 + 3 < j2:
                     break
@@ -343,13 +744,14 @@ class Grids(problem.Problem):
                     X[i1:i2, j1:j2] = c[n]
                     f_X[i1:i2, j1:j2] = c[n]
 
-    def task_color_grow(self, A, f_A, B, f_B):
+    # @torch.compile
+    def task_half_fill(self, A, f_A, B, f_B):
         di, dj = torch.randint(2, (2,)) * 2 - 1
         nb_rec = 3
-        c = torch.randperm(len(self.colors) - 1)[: 2 * nb_rec] + 1
-        direction = torch.randint(4, (1,))
+        c = torch.randperm(self.nb_colors - 1)[: 2 * nb_rec] + 1
+        direction = torch.randint(4, (1,)).item()
         for X, f_X in [(A, f_A), (B, f_B)]:
-            r = self.rec_coo(nb_rec)
+            r = self.rec_coo(nb_rec, prevent_overlap=True)
             for n in range(nb_rec):
                 i1, j1, i2, j2 = r[n]
                 X[i1:i2, j1:j2] = c[2 * n]
@@ -384,29 +786,39 @@ class Grids(problem.Problem):
                     else:
                         f_X[i1:i2, j : j + 1] = c[2 * n + 1]
 
+    # @torch.compile
     def task_frame(self, A, f_A, B, f_B):
         nb_rec = 3
-        c = torch.randperm(len(self.colors) - 1)[: nb_rec + 1] + 1
+        c = torch.randperm(self.nb_colors - 1)[: nb_rec + 1] + 1
         for X, f_X in [(A, f_A), (B, f_B)]:
-            r = self.rec_coo(nb_rec)
+            r = self.rec_coo(nb_rec, prevent_overlap=True)
             for n in range(nb_rec):
                 i1, j1, i2, j2 = r[n]
                 X[i1:i2, j1:j2] = c[n]
-                f_X[i1:i2, j1:j2] = c[n]
                 if n == nb_rec - 1:
-                    f_X[i1 + 1 : i2 - 1, j1 + 1 : j2 - 1] = 0
+                    f_X[i1:i2, j1] = c[n]
+                    f_X[i1:i2, j2 - 1] = c[n]
+                    f_X[i1, j1:j2] = c[n]
+                    f_X[i2 - 1, j1:j2] = c[n]
+                else:
+                    f_X[i1:i2, j1:j2] = c[n]
 
+    # @torch.compile
     def task_detect(self, A, f_A, B, f_B):
         nb_rec = 3
-        c = torch.randperm(len(self.colors) - 1)[: nb_rec + 1] + 1
+        c = torch.randperm(self.nb_colors - 1)[: nb_rec + 1] + 1
         for X, f_X in [(A, f_A), (B, f_B)]:
-            r = self.rec_coo(nb_rec)
+            r = self.rec_coo(nb_rec, prevent_overlap=True)
             for n in range(nb_rec):
                 i1, j1, i2, j2 = r[n]
                 X[i1:i2, j1:j2] = c[n]
+                f_X[i1:i2, j1:j2] = c[n]
                 if n < nb_rec - 1:
-                    f_X[i1, j1] = c[-1]
+                    for k in range(2):
+                        f_X[i1 + k, j1] = c[-1]
+                        f_X[i1, j1 + k] = c[-1]
 
+    # @torch.compile
     def contact(self, X, i, j, q):
         nq, nq_diag = 0, 0
         no = 0
@@ -442,35 +854,66 @@ class Grids(problem.Problem):
 
         return no, nq, nq_diag
 
-    def task_count(self, A, f_A, B, f_B):
-        N = torch.randint(4, (1,)) + 2
-        c = torch.randperm(len(self.colors) - 1)[:N] + 1
+    def REMOVED_task_count(self, A, f_A, B, f_B):
+        while True:
+            error = False
+
+            N = 3
+            c = torch.zeros(N + 2, dtype=torch.int64)
+            c[1:] = torch.randperm(self.nb_colors - 1)[: N + 1] + 1
+
+            for X, f_X in [(A, f_A), (B, f_B)]:
+                if not hasattr(self, "cache_count") or len(self.cache_count) == 0:
+                    self.cache_count = list(
+                        grow_islands(
+                            1000,
+                            self.height,
+                            self.width,
+                            nb_seeds=self.height * self.width // 8,
+                            nb_iterations=self.height * self.width // 5,
+                        )
+                    )
+
+                X[...] = self.cache_count.pop()
+
+                # k = (X.max() + 1 + (c.size(0) - 1)).item()
+                # V = torch.arange(k) // (c.size(0) - 1)
+                # V = (V + torch.rand(V.size())).sort().indices[: X.max() + 1] % (
+                # c.size(0) - 1
+                # ) + 1
+
+                V = torch.randint(N, (X.max() + 1,)) + 1
+                V[0] = 0
+                NB = F.one_hot(c[V]).sum(dim=0)
+                X[...] = c[V[X]]
+                f_X[...] = X
+
+                if F.one_hot(X.flatten()).max(dim=0).values.sum().item() >= 3:
+                    m = NB[c[:-1]].max()
+                    if (NB[c[:-1]] == m).long().sum() == 1:
+                        for e in range(1, N + 1):
+                            if NB[c[e]] == m:
+                                a = (f_X == c[e]).long()
+                                f_X[...] = (1 - a) * f_X + a * c[-1]
+                else:
+                    error = True
+                    break
+
+            if not error:
+                break
 
-        for X, f_X in [(A, f_A), (B, f_B)]:
-            nb = torch.zeros(N, dtype=torch.int64)
-            q = torch.randint(N, (self.height * self.width,))
-            k = torch.randperm(self.height * self.width)
-            for p in range(self.height * self.width):
-                i, j = k[p] % self.height, k[p] // self.height
-                no, nq, nq_diag = self.contact(X, i, j, c[q[p]])
-                if no == 0 and nq_diag == 0:
-                    if nq == 0:
-                        if nb[q[p]] < self.width:
-                            X[i, j] = c[q[p]]
-                            nb[q[p]] += 1
-                    if nq == 1:
-                        X[i, j] = c[q[p]]
-
-            for n in range(N):
-                for j in range(nb[n]):
-                    f_X[n, j] = c[n]
+        assert F.one_hot(A.flatten()).max(dim=0).values.sum() >= 3
 
+    # @torch.compile
     def task_trajectory(self, A, f_A, B, f_B):
-        c = torch.randperm(len(self.colors) - 1)[:2] + 1
+        c = torch.randperm(self.nb_colors - 1)[:2] + 1
         for X, f_X in [(A, f_A), (B, f_B)]:
             while True:
                 di, dj = torch.randint(7, (2,)) - 3
-                i, j = torch.randint(self.height, (1,)), torch.randint(self.width, (1,))
+                i, j = (
+                    torch.randint(self.height, (1,)).item(),
+                    torch.randint(self.width, (1,)).item(),
+                )
                 if (
                     abs(di) + abs(dj) > 0
                     and i + 2 * di >= 0
@@ -492,10 +935,11 @@ class Grids(problem.Problem):
                 f_X[i + k * di, j + k * dj] = c[min(k, 1)]
                 k += 1
 
+    # @torch.compile
     def task_bounce(self, A, f_A, B, f_B):
-        c = torch.randperm(len(self.colors) - 1)[:3] + 1
+        c = torch.randperm(self.nb_colors - 1)[:3] + 1
         for X, f_X in [(A, f_A), (B, f_B)]:
-
+            # @torch.compile
             def free(i, j):
                 return (
                     i >= 0
@@ -510,8 +954,9 @@ class Grids(problem.Problem):
                 X[...] = 0
 
                 for _ in range((self.height * self.width) // 10):
-                    i, j = torch.randint(self.height, (1,)), torch.randint(
-                        self.width, (1,)
+                    i, j = (
+                        torch.randint(self.height, (1,)).item(),
+                        torch.randint(self.width, (1,)).item(),
                     )
                     X[i, j] = c[0]
                     f_X[i, j] = c[0]
@@ -521,7 +966,10 @@ class Grids(problem.Problem):
                     if abs(di) + abs(dj) == 1:
                         break
 
-                i, j = torch.randint(self.height, (1,)), torch.randint(self.width, (1,))
+                i, j = (
+                    torch.randint(self.height, (1,)).item(),
+                    torch.randint(self.width, (1,)).item(),
+                )
 
                 X[i, j] = c[1]
                 f_X[i, j] = c[1]
@@ -545,6 +993,7 @@ class Grids(problem.Problem):
                     f_X[i, j] = c[2]
                     if l <= 1:
                         X[i, j] = c[2]
+                        f_X[i, j] = c[1]
 
                     if l >= self.width:
                         break
@@ -555,33 +1004,41 @@ class Grids(problem.Problem):
                 if l > 3:
                     break
 
+    # @torch.compile
     def task_scale(self, A, f_A, B, f_B):
-        c = torch.randperm(len(self.colors) - 1)[:2] + 1
+        c = torch.randperm(self.nb_colors - 1)[:2] + 1
 
-        i, j = torch.randint(self.height // 2, (1,)), torch.randint(
-            self.width // 2, (1,)
+        i, j = (
+            torch.randint(self.height // 2, (1,)).item(),
+            torch.randint(self.width // 2, (1,)).item(),
         )
 
         for X, f_X in [(A, f_A), (B, f_B)]:
             for _ in range(3):
                 while True:
-                    i1, j1 = torch.randint(self.height // 2 + 1, (1,)), torch.randint(
-                        self.width // 2 + 1, (1,)
+                    i1, j1 = (
+                        torch.randint(self.height // 2 + 1, (1,)).item(),
+                        torch.randint(self.width // 2 + 1, (1,)).item(),
                     )
-                    i2, j2 = torch.randint(self.height // 2 + 1, (1,)), torch.randint(
-                        self.width // 2 + 1, (1,)
+                    i2, j2 = (
+                        torch.randint(self.height // 2 + 1, (1,)).item(),
+                        torch.randint(self.width // 2 + 1, (1,)).item(),
                     )
                     if i1 < i2 and j1 < j2 and min(i2 - i1, j2 - j1) <= 3:
                         break
                 X[i + i1 : i + i2, j + j1 : j + j2] = c[0]
                 f_X[2 * i1 : 2 * i2, 2 * j1 : 2 * j2] = c[0]
 
-            X[i, j] = c[1]
-            f_X[0:2, 0:2] = c[1]
+            for k in range(2):
+                X[i + k, j] = c[1]
+                X[i, j + k] = c[1]
+                f_X[i + k, j] = c[1]
+                f_X[i, j + k] = c[1]
 
+    # @torch.compile
     def task_symbols(self, A, f_A, B, f_B):
         nb_rec = 4
-        c = torch.randperm(len(self.colors) - 1)[: nb_rec + 1] + 1
+        c = torch.randperm(self.nb_colors - 1)[: nb_rec + 1] + 1
         delta = 3
         for X, f_X in [(A, f_A), (B, f_B)]:
             while True:
@@ -593,29 +1050,175 @@ class Grids(problem.Problem):
                 if d.min() > delta:
                     break
 
-            for k in range(1, nb_rec):
-                X[i[k] : i[k] + delta, j[k] : j[k] + delta] = c[k]
-
             ai, aj = i.float().mean(), j.float().mean()
 
-            q = torch.randint(3, (1,)) + 1
-
-            X[i[0] + delta // 2 - 1, j[0] + delta // 2 - 1] = c[0]
-            X[i[0] + delta // 2 - 1, j[0] + delta // 2 + 1] = c[0]
-            X[i[0] + delta // 2 + 1, j[0] + delta // 2 - 1] = c[0]
-            X[i[0] + delta // 2 + 1, j[0] + delta // 2 + 1] = c[0]
+            q = torch.randint(3, (1,)).item() + 1
 
             assert i[q] != ai and j[q] != aj
 
-            X[
+            for Z in [X, f_X]:
+                for k in range(0, nb_rec):
+                    Z[i[k] : i[k] + delta, j[k] : j[k] + delta] = c[k]
+                # Z[i[0] + delta // 2 - 1, j[0] + delta // 2 - 1] = c[0]
+                # Z[i[0] + delta // 2 - 1, j[0] + delta // 2 + 1] = c[0]
+                # Z[i[0] + delta // 2 + 1, j[0] + delta // 2 - 1] = c[0]
+                # Z[i[0] + delta // 2 + 1, j[0] + delta // 2 + 1] = c[0]
+
+            # f_X[i[0] : i[0] + delta, j[0] : j[0] + delta] = c[q]
+
+            f_X[i[0] + delta // 2, j[0] + delta // 2] = c[q]
+            # f_X[i[0] : i[0] + delta, j[0] : j[0] + delta] = c[q]
+
+            ii, jj = (
                 i[0] + delta // 2 + (i[q] - ai).sign().long(),
                 j[0] + delta // 2 + (j[q] - aj).sign().long(),
-            ] = c[nb_rec]
+            )
+
+            X[ii, jj] = c[nb_rec]
+            X[i[0] + delta // 2, jj] = c[nb_rec]
+            X[ii, j[0] + delta // 2] = c[nb_rec]
 
-            f_X[i[0] : i[0] + delta, j[0] : j[0] + delta] = c[q]
+            f_X[ii, jj] = c[nb_rec]
+            f_X[i[0] + delta // 2, jj] = c[nb_rec]
+            f_X[ii, j[0] + delta // 2] = c[nb_rec]
 
-    def task_islands(self, A, f_A, B, f_B):
-        pass
+    # @torch.compile
+    def task_isometry(self, A, f_A, B, f_B):
+        nb_rec = 3
+        di, dj = torch.randint(3, (2,)) - 1
+        o = torch.tensor([[0.0, 1.0], [-1.0, 0.0]])
+        m = torch.eye(2)
+        for _ in range(torch.randint(4, (1,)).item()):
+            m = m @ o
+        if torch.rand(1) < 0.5:
+            m[0, :] = -m[0, :]
+
+        ci, cj = (self.height - 1) / 2, (self.width - 1) / 2
+
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            while True:
+                X[...] = 0
+                f_X[...] = 0
+
+                c = torch.randperm(self.nb_colors - 1)[:nb_rec] + 1
+
+                for r in range(nb_rec):
+                    while True:
+                        i1, i2 = torch.randint(self.height - 2, (2,)) + 1
+                        j1, j2 = torch.randint(self.width - 2, (2,)) + 1
+                        if (
+                            i2 >= i1
+                            and j2 >= j1
+                            and max(i2 - i1, j2 - j1) >= 2
+                            and min(i2 - i1, j2 - j1) <= 3
+                        ):
+                            break
+                    X[i1 : i2 + 1, j1 : j2 + 1] = c[r]
+
+                    i1, j1, i2, j2 = i1 - ci, j1 - cj, i2 - ci, j2 - cj
+
+                    i1, j1 = m[0, 0] * i1 + m[0, 1] * j1, m[1, 0] * i1 + m[1, 1] * j1
+                    i2, j2 = m[0, 0] * i2 + m[0, 1] * j2, m[1, 0] * i2 + m[1, 1] * j2
+
+                    i1, j1, i2, j2 = i1 + ci, j1 + cj, i2 + ci, j2 + cj
+                    i1, i2 = i1.long() + di, i2.long() + di
+                    j1, j2 = j1.long() + dj, j2.long() + dj
+                    if i1 > i2:
+                        i1, i2 = i2, i1
+                    if j1 > j2:
+                        j1, j2 = j2, j1
+
+                    f_X[i1 : i2 + 1, j1 : j2 + 1] = c[r]
+
+                n = F.one_hot(X.flatten()).sum(dim=0)[1:]
+                if (
+                    n.sum() > self.height * self.width // 4
+                    and (n > 0).long().sum() == nb_rec
+                ):
+                    break
+
+    def compute_distance(self, walls, goal_i, goal_j):
+        max_length = walls.numel()
+        dist = torch.full_like(walls, max_length)
+
+        dist[goal_i, goal_j] = 0
+        pred_dist = torch.empty_like(dist)
+
+        while True:
+            pred_dist.copy_(dist)
+            dist[1:-1, 1:-1] = (
+                torch.cat(
+                    (
+                        dist[None, 1:-1, 1:-1],
+                        dist[None, 1:-1, 0:-2],
+                        dist[None, 2:, 1:-1],
+                        dist[None, 1:-1, 2:],
+                        dist[None, 0:-2, 1:-1],
+                    ),
+                    0,
+                ).min(dim=0)[0]
+                + 1
+            )
+
+            dist = walls * max_length + (1 - walls) * dist
+
+            if dist.equal(pred_dist):
+                return dist * (1 - walls)
+
+    # @torch.compile
+    def REMOVED_task_distance(self, A, f_A, B, f_B):
+        c = torch.randperm(self.nb_colors - 1)[:3] + 1
+        dist0 = torch.empty(self.height + 2, self.width + 2)
+        dist1 = torch.empty(self.height + 2, self.width + 2)
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            nb_rec = torch.randint(3, (1,)).item() + 1
+            while True:
+                r = self.rec_coo(nb_rec, prevent_overlap=True)
+                X[...] = 0
+                f_X[...] = 0
+                for n in range(nb_rec):
+                    i1, j1, i2, j2 = r[n]
+                    X[i1:i2, j1:j2] = c[0]
+                    f_X[i1:i2, j1:j2] = c[0]
+                while True:
+                    i0, j0 = (
+                        torch.randint(self.height, (1,)).item(),
+                        torch.randint(self.width, (1,)).item(),
+                    )
+                    if X[i0, j0] == 0:
+                        break
+                while True:
+                    i1, j1 = (
+                        torch.randint(self.height, (1,)).item(),
+                        torch.randint(self.width, (1,)).item(),
+                    )
+                    if X[i1, j1] == 0:
+                        break
+                dist1[...] = 1
+                dist1[1:-1, 1:-1] = (X != 0).long()
+                dist1[...] = self.compute_distance(dist1, i1 + 1, j1 + 1)
+                if (
+                    dist1[i0 + 1, j0 + 1] >= 1
+                    and dist1[i0 + 1, j0 + 1] < self.height * 4
+                ):
+                    break
+
+            dist0[...] = 1
+            dist0[1:-1, 1:-1] = (X != 0).long()
+            dist0[...] = self.compute_distance(dist0, i0 + 1, j0 + 1)
+
+            dist0 = dist0[1:-1, 1:-1]
+            dist1 = dist1[1:-1, 1:-1]
+
+            D = dist1[i0, j0]
+            for d in range(1, D):
+                M = (dist0 == d) & (dist1 == D - d)
+                f_X[...] = (1 - M) * f_X + M * c[1]
+
+            X[i0, j0] = c[2]
+            f_X[i0, j0] = c[2]
+            X[i1, j1] = c[2]
+            f_X[i1, j1] = c[2]
 
     # for X, f_X in [(A, f_A), (B, f_B)]:
     # n = torch.arange(self.height * self.width).reshape(self.height, self.width)
@@ -625,72 +1228,528 @@ class Grids(problem.Problem):
     # i,j=q%self.height,q//self.height
     # if
 
+    # @torch.compile
+    def TOO_HARD_task_puzzle(self, A, f_A, B, f_B):
+        S = 4
+        i0, j0 = (self.height - S) // 2, (self.width - S) // 2
+        c = torch.randperm(self.nb_colors - 1)[:4] + 1
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            while True:
+                f_X[...] = 0
+                h = list(torch.randperm(c.size(0)))
+                n = torch.zeros(c.max() + 1)
+                for _ in range(2):
+                    k = torch.randperm(S * S)
+                    for q in k:
+                        i, j = q % S + i0, q // S + j0
+                        if f_X[i, j] == 0:
+                            r, s, t, u = (
+                                f_X[i - 1, j],
+                                f_X[i, j - 1],
+                                f_X[i + 1, j],
+                                f_X[i, j + 1],
+                            )
+                            r, s, t, u = torch.tensor([r, s, t, u])[torch.randperm(4)]
+                            if r > 0 and n[r] < 6:
+                                n[r] += 1
+                                f_X[i, j] = r
+                            elif s > 0 and n[s] < 6:
+                                n[s] += 1
+                                f_X[i, j] = s
+                            elif t > 0 and n[t] < 6:
+                                n[t] += 1
+                                f_X[i, j] = t
+                            elif u > 0 and n[u] < 6:
+                                n[u] += 1
+                                f_X[i, j] = u
+                            else:
+                                if len(h) > 0:
+                                    d = c[h.pop()]
+                                    n[d] += 1
+                                    f_X[i, j] = d
+
+                if n.sum() == S * S:
+                    break
+
+            k = 0
+            for d in range(4):
+                while True:
+                    ii, jj = (
+                        torch.randint(self.height, (1,)).item(),
+                        torch.randint(self.width, (1,)).item(),
+                    )
+                    e = 0
+                    for i in range(S):
+                        for j in range(S):
+                            if (
+                                ii + i >= self.height
+                                or jj + j >= self.width
+                                or (
+                                    f_X[i + i0, j + j0] == c[d]
+                                    and X[ii + i, jj + j] > 0
+                                )
+                            ):
+                                e = 1
+                    if e == 0:
+                        break
+                for i in range(S):
+                    for j in range(S):
+                        if f_X[i + i0, j + j0] == c[d]:
+                            X[ii + i, jj + j] = c[d]
+
+    def TOO_MESSY_task_islands(self, A, f_A, B, f_B):
+        c = torch.randperm(self.nb_colors - 1)[:2] + 1
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            if not hasattr(self, "cache_islands") or len(self.cache_islands) == 0:
+                self.cache_islands = list(
+                    grow_islands(
+                        1000,
+                        self.height,
+                        self.width,
+                        nb_seeds=self.height * self.width // 20,
+                        nb_iterations=self.height * self.width // 2,
+                    )
+                )
+
+            A = self.cache_islands.pop()
+
+            while True:
+                i, j = (
+                    torch.randint(self.height // 2, (1,)).item(),
+                    torch.randint(self.width // 2, (1,)).item(),
+                )
+                if A[i, j] > 0:
+                    break
+
+            X[...] = (A > 0) * c[0]
+            f_X[...] = (A == A[i, j]) * c[1] + ((A > 0) & (A != A[i, j])) * c[0]
+            f_X[i, j] = X[i, j]
+            X[i, j] = c[1]
+
+    # @torch.compile
+    def TOO_HARD_task_stack(self, A, f_A, B, f_B):
+        N = 5
+        c = torch.randperm(self.nb_colors - 1)[:N] + 1
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            i1, j1, i2, j2 = (
+                self.height // 2 - 1,
+                self.width // 2 - 1,
+                self.height // 2 + 1,
+                self.width // 2 + 1,
+            )
+            op = torch.tensor((0, 1, 2, 3) * 4)
+            op = op[torch.randperm(op.size(0))[:9]]
+            for q in range(op.size(0)):
+                u = 3 * (q // 3)
+                v = 3 * (q % 3)
+                d = c[torch.randint(N, (1,)).item()]
+                # X[u+1,v+1]=d
+                if op[q] == 0:  # right
+                    X[u : u + 3, v + 2] = d
+                elif op[q] == 1:  # let
+                    X[u : u + 3, v] = d
+                elif op[q] == 2:  # bottom
+                    X[u + 2, v : v + 3] = d
+                elif op[q] == 3:  # top
+                    X[u, v : v + 3] = d
+
+                if q == 0:
+                    f_X[i1:i2, j1:j2] = d
+                elif op[q] == 0:  # right
+                    f_X[i1:i2, j2] = d
+                    j2 += 1
+                elif op[q] == 1:  # let
+                    j1 -= 1
+                    f_X[i1:i2, j1] = d
+                elif op[q] == 2:  # bottom
+                    f_X[i2, j1:j2] = d
+                    i2 += 1
+                elif op[q] == 3:  # top
+                    i1 -= 1
+                    f_X[i1, j1:j2] = d
+
+    def randint(self, *m):
+        m = torch.tensor(m)
+        return (torch.rand(m.size()) * m).long()
+
+    def TOO_HARD_task_matrices(self, A, f_A, B, f_B):
+        N = 6
+        c = torch.randperm(self.nb_colors - 1)[:N] + 1
+
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            M1 = torch.randint(2, (5, 5))
+            M2 = torch.randint(2, (5, 5))
+            P = M1 @ M2
+            for i in range(5):
+                for j in range(5):
+                    X[i, j] = c[M1[i, j]]
+                    X[i, j + 5] = c[M2[i, j]]
+                    f_X[i, j] = c[M1[i, j]]
+                    f_X[i, j + 5] = c[M2[i, j]]
+                    f_X[i + 5, j + 5] = c[P[i, j]]
+
+    def TOO_HARD_task_compute(self, A, f_A, B, f_B):
+        N = 6
+        c = torch.randperm(self.nb_colors - 1)[:N] + 1
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            v = torch.randint((self.width - 1) // 2, (N,)) + 1
+            chain = torch.randperm(N)
+            eq = []
+            for i in range(chain.size(0) - 1):
+                i1, i2 = chain[i], chain[i + 1]
+                v1, v2 = v[i1], v[i2]
+                k = torch.arange(self.width // 2) + 1
+                d = ((k[None, :] * v1 - k[:, None] * v2) == 0).nonzero() + 1
+                d = d[torch.randint(d.size(0), (1,)).item()]
+                w1, w2 = d
+                eq.append((c[i1], w1, c[i2], w2))
+
+            ii = torch.randperm(self.height - 2)[: len(eq)]
+
+            for k, x in enumerate(eq):
+                i = ii[k]
+                c1, w1, c2, w2 = x
+                s = torch.randint(self.width - (w1 + w2) + 1, (1,)).item()
+                X[i, s : s + w1] = c1
+                X[i, s + w1 : s + w1 + w2] = c2
+                f_X[i, s : s + w1] = c1
+                f_X[i, s + w1 : s + w1 + w2] = c2
+
+            i1, i2 = torch.randperm(N)[:2]
+            v1, v2 = v[i1], v[i2]
+            k = torch.arange(self.width // 2) + 1
+            d = ((k[None, :] * v1 - k[:, None] * v2) == 0).nonzero() + 1
+            d = d[torch.randint(d.size(0), (1,)).item()]
+            w1, w2 = d
+            c1, c2 = c[i1], c[i2]
+            s = 0  # torch.randint(self.width - (w1 + w2) + 1, (1,)).item()
+            i = self.height - 1
+            X[i, s : s + w1] = c1
+            X[i, s + w1 : s + w1 + 1] = c2
+            f_X[i, s : s + w1] = c1
+            f_X[i, s + w1 : s + w1 + w2] = c2
+
+    # @torch.compile
+    # [ai1,ai2] [bi1,bi2]
+    def task_contact(self, A, f_A, B, f_B):
+        def rec_dist(a, b):
+            ai1, aj1, ai2, aj2 = a
+            bi1, bj1, bi2, bj2 = b
+            v = max(ai1 - bi2, bi1 - ai2)
+            h = max(aj1 - bj2, bj1 - aj2)
+            return min(max(v, 0) + max(h + 1, 0), max(v + 1, 0) + max(h, 0))
+
+        nb_rec = 3
+        c = torch.randperm(self.nb_colors - 1)[:nb_rec] + 1
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            while True:
+                r = self.rec_coo(nb_rec, prevent_overlap=True)
+                d = [rec_dist(r[0], r[k]) for k in range(nb_rec)]
+                if min(d[1:]) == 0:
+                    break
+
+            for n in range(nb_rec):
+                i1, j1, i2, j2 = r[n]
+                X[i1:i2, j1:j2] = c[n]
+                f_X[i1:i2, j1:j2] = c[n]
+                if d[n] == 0:
+                    f_X[i1, j1:j2] = c[0]
+                    f_X[i2 - 1, j1:j2] = c[0]
+                    f_X[i1:i2, j1] = c[0]
+                    f_X[i1:i2, j2 - 1] = c[0]
+
+    # @torch.compile
+    # [ai1,ai2] [bi1,bi2]
+    def task_corners(self, A, f_A, B, f_B):
+        polarity = torch.randint(2, (1,)).item()
+        nb_rec = 3
+        c = torch.randperm(self.nb_colors - 1)[:nb_rec] + 1
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            r = self.rec_coo(nb_rec, prevent_overlap=True)
+
+            for n in range(nb_rec):
+                i1, j1, i2, j2 = r[n]
+                for k in range(2):
+                    if polarity == 0:
+                        X[i1 + k, j1] = c[n]
+                        X[i2 - 1 - k, j2 - 1] = c[n]
+                        X[i1, j1 + k] = c[n]
+                        X[i2 - 1, j2 - 1 - k] = c[n]
+                    else:
+                        X[i1 + k, j2 - 1] = c[n]
+                        X[i2 - 1 - k, j1] = c[n]
+                        X[i1, j2 - 1 - k] = c[n]
+                        X[i2 - 1, j1 + k] = c[n]
+                    f_X[i1:i2, j1:j2] = c[n]
+
+    def compdist(self, X, i, j):
+        dd = X.new_full((self.height + 2, self.width + 2), self.height * self.width)
+        d = dd[1:-1, 1:-1]
+        m = (X > 0).long()
+        d[i, j] = 0
+        e = d.clone()
+        while True:
+            e[...] = d
+            d[...] = (
+                d.min(dd[:-2, 1:-1] + 1)
+                .min(dd[2:, 1:-1] + 1)
+                .min(dd[1:-1, :-2] + 1)
+                .min(dd[1:-1, 2:] + 1)
+            )
+            d[...] = (1 - m) * d + m * self.height * self.width
+            if e.equal(d):
+                break
+
+        return d
+
+    # @torch.compile
+    def task_path(self, A, f_A, B, f_B):
+        nb_rec = 2
+        c = torch.randperm(self.nb_colors - 1)[: nb_rec + 2] + 1
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            while True:
+                X[...] = 0
+                f_X[...] = 0
+
+                r = self.rec_coo(nb_rec, prevent_overlap=True)
+                for n in range(nb_rec):
+                    i1, j1, i2, j2 = r[n]
+                    X[i1:i2, j1:j2] = c[n]
+                    f_X[i1:i2, j1:j2] = c[n]
+
+                i1, i2 = torch.randint(self.height, (2,))
+                j1, j2 = torch.randint(self.width, (2,))
+                if (
+                    abs(i1 - i2) + abs(j1 - j2) > 2
+                    and X[i1, j1] == 0
+                    and X[i2, j2] == 0
+                ):
+                    d2 = self.compdist(X, i2, j2)
+                    d = self.compdist(X, i1, j1)
+
+                    if d2[i1, j1] < 2 * self.width:
+                        break
+
+            m = ((d + d2) == d[i2, j2]).long()
+            f_X[...] = m * c[-1] + (1 - m) * f_X
+
+            X[i1, j1] = c[-2]
+            X[i2, j2] = c[-2]
+            f_X[i1, j1] = c[-2]
+            f_X[i2, j2] = c[-2]
+
+    # @torch.compile
+    def task_fill(self, A, f_A, B, f_B):
+        nb_rec = 3
+        c = torch.randperm(self.nb_colors - 1)[: nb_rec + 1] + 1
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            accept_full = torch.rand(1) < 0.5
+
+            while True:
+                X[...] = 0
+                f_X[...] = 0
+
+                r = self.rec_coo(nb_rec, prevent_overlap=True)
+                for n in range(nb_rec):
+                    i1, j1, i2, j2 = r[n]
+                    X[i1:i2, j1:j2] = c[n]
+                    f_X[i1:i2, j1:j2] = c[n]
+
+                while True:
+                    i, j = (
+                        torch.randint(self.height, (1,)).item(),
+                        torch.randint(self.width, (1,)).item(),
+                    )
+                    if X[i, j] == 0:
+                        break
+
+                d = self.compdist(X, i, j)
+                m = (d < self.height * self.width).long()
+                X[i, j] = c[-1]
+                f_X[...] = m * c[-1] + (1 - m) * f_X
+                f_X[i, j] = 0
+
+                if accept_full or (d * (X == 0)).max() == self.height * self.width:
+                    break
+
+    def TOO_HARD_task_addition(self, A, f_A, B, f_B):
+        c = torch.randperm(self.nb_colors - 1)[:4] + 1
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            N1 = torch.randint(2 ** (self.width - 1) - 1, (1,)).item()
+            N2 = torch.randint(2 ** (self.width - 1) - 1, (1,)).item()
+            S = N1 + N2
+            for j in range(self.width):
+                r1 = (N1 // (2**j)) % 2
+                X[0, -j - 1] = c[r1]
+                f_X[0, -j - 1] = c[r1]
+                r2 = (N2 // (2**j)) % 2
+                X[1, -j - 1] = c[r2]
+                f_X[1, -j - 1] = c[r2]
+                rs = (S // (2**j)) % 2
+                f_X[2, -j - 1] = c[2 + rs]
+
+    def task_science_implicit(self, A, f_A, B, f_B):
+        nb_rec = 5
+        c = torch.randperm(self.nb_colors - 1)[:nb_rec] + 1
+
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            while True:
+                i1, i2 = torch.randint(self.height, (2,)).sort().values
+                if i1 >= 1 and i2 < self.height and i1 + 3 < i2:
+                    break
+
+            while True:
+                j1, j2 = torch.randint(self.width, (2,)).sort().values
+                if j1 >= 1 and j2 < self.width and j1 + 3 < j2:
+                    break
+
+            f_X[i1:i2, j1:j2] = c[0]
+
+            # ---------------------
+
+            while True:
+                ii1, ii2 = torch.randint(self.height, (2,)).sort().values
+                if ii1 >= i1 and ii2 <= i2 and ii1 + 1 < ii2:
+                    break
+            jj = torch.randint(j1, (1,))
+            X[ii1:ii2, jj:j1] = c[1]
+            f_X[ii1:ii2, jj:j1] = c[1]
+
+            while True:
+                ii1, ii2 = torch.randint(self.height, (2,)).sort().values
+                if ii1 >= i1 and ii2 <= i2 and ii1 + 1 < ii2:
+                    break
+            jj = torch.randint(self.width - j2, (1,)) + j2 + 1
+            X[ii1:ii2, j2:jj] = c[2]
+            f_X[ii1:ii2, j2:jj] = c[2]
+
+            # ---------------------
+
+            while True:
+                jj1, jj2 = torch.randint(self.width, (2,)).sort().values
+                if jj1 >= j1 and jj2 <= j2 and jj1 + 1 < jj2:
+                    break
+            ii = torch.randint(i1, (1,))
+            X[ii:i1, jj1:jj2] = c[3]
+            f_X[ii:i1, jj1:jj2] = c[3]
+
+            while True:
+                jj1, jj2 = torch.randint(self.width, (2,)).sort().values
+                if jj1 >= j1 and jj2 <= j2 and jj1 + 1 < jj2:
+                    break
+            ii = torch.randint(self.height - i2, (1,)) + i2 + 1
+            X[i2:ii, jj1:jj2] = c[4]
+            f_X[i2:ii, jj1:jj2] = c[4]
+
+    def task_science_dot(self, A, f_A, B, f_B):
+        nb_rec = 3
+        c = torch.randperm(self.nb_colors - 1)[: nb_rec + 1] + 1
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            while True:
+                X[...] = 0
+                f_X[...] = 0
+                r = self.rec_coo(nb_rec, prevent_overlap=True)
+                i, j = (
+                    torch.randint(self.height, (1,)).item(),
+                    torch.randint(self.width, (1,)).item(),
+                )
+                q = 0
+                for n in range(nb_rec):
+                    i1, j1, i2, j2 = r[n]
+                    X[i1:i2, j1:j2] = c[n]
+                    f_X[i1:i2, j1:j2] = c[n]
+                    if i >= i1 and i < i2:
+                        q += 1
+                        f_X[i, j1:j2] = c[-1]
+                    if j >= j1 and j < j2:
+                        q += 1
+                        f_X[i1:i2, j] = c[-1]
+                X[i, j] = c[-1]
+                f_X[i, j] = c[-1]
+                if q >= 2:
+                    break
+
+    def collide(self, s, r, rs):
+        i, j = r
+        for i2, j2 in rs:
+            if abs(i - i2) < s and abs(j - j2) < s:
+                return True
+        return False
+
+    def task_science_tag(self, A, f_A, B, f_B):
+        c = torch.randperm(self.nb_colors - 1)[:4] + 1
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            rs = []
+            while len(rs) < 4:
+                i, j = (
+                    torch.randint(self.height - 3, (1,)).item(),
+                    torch.randint(self.width - 3, (1,)).item(),
+                )
+                if not self.collide(s=3, r=(i, j), rs=rs):
+                    rs.append((i, j))
+
+            for k in range(len(rs)):
+                i, j = rs[k]
+                q = min(k, 2)
+                X[i, j : j + 3] = c[q]
+                X[i + 2, j : j + 3] = c[q]
+                X[i : i + 3, j] = c[q]
+                X[i : i + 3, j + 2] = c[q]
+
+                f_X[i, j : j + 3] = c[q]
+                f_X[i + 2, j : j + 3] = c[q]
+                f_X[i : i + 3, j] = c[q]
+                f_X[i : i + 3, j + 2] = c[q]
+                if q == 2:
+                    f_X[i + 1, j + 1] = c[-1]
+
+    # end_tasks
+
     ######################################################################
 
-    def all_tasks(self):
-        return [
-            self.task_replace_color,
-            self.task_translate,
-            self.task_grow,
-            self.task_color_grow,
-            self.task_frame,
-            self.task_detect,
-            self.task_count,
-            self.task_trajectory,
-            self.task_bounce,
-            self.task_scale,
-            self.task_symbols,
-            # self.task_islands,
-        ]
+    def create_empty_quizzes(self, nb, struct=("A", "f_A", "B", "f_B")):
+        S = self.height * self.width
+        quizzes = torch.zeros(nb, 4 * (S + 1), dtype=torch.int64)
+        quizzes[:, 0 * (S + 1)] = self.l2tok[struct[0]]
+        quizzes[:, 1 * (S + 1)] = self.l2tok[struct[1]]
+        quizzes[:, 2 * (S + 1)] = self.l2tok[struct[2]]
+        quizzes[:, 3 * (S + 1)] = self.l2tok[struct[3]]
+
+        return quizzes
 
-    def trivial_prompts_and_answers(self, prompts, answers):
+    def generate_w_quizzes_(self, nb, tasks=None, progress_bar=False):
         S = self.height * self.width
-        Bs = prompts[:, 2 * (S + 1) : 2 * (S + 1) + S]
-        f_Bs = answers
-        return (Bs == f_Bs).long().min(dim=-1).values > 0
 
-    def generate_prompts_and_answers(self, nb, tasks=None, device="cpu"):
         if tasks is None:
-            tasks = self.all_tasks()
+            tasks = self.all_tasks
 
-        S = self.height * self.width
-        prompts = torch.zeros(nb, 3 * S + 2, dtype=torch.int64)
-        answers = torch.zeros(nb, S, dtype=torch.int64)
-
-        for prompt, answer in tqdm.tqdm(
-            zip(prompts, answers),
-            dynamic_ncols=True,
-            desc="world generation",
-            total=prompts.size(0),
-        ):
-            A = prompt[0 * (S + 1) : 0 * (S + 1) + S].view(self.height, self.width)
-            f_A = prompt[1 * (S + 1) : 1 * (S + 1) + S].view(self.height, self.width)
-            B = prompt[2 * (S + 1) : 2 * (S + 1) + S].view(self.height, self.width)
-            f_B = answer.view(self.height, self.width)
-            task = tasks[torch.randint(len(tasks), (1,))]
+        quizzes = self.create_empty_quizzes(nb, ("A", "f_A", "B", "f_B"))
+
+        if progress_bar:
+            quizzes = tqdm.tqdm(
+                quizzes,
+                dynamic_ncols=True,
+                desc="world quizzes generation",
+                total=quizzes.size(0),
+            )
+
+        for quiz in quizzes:
+            q = quiz.reshape(4, S + 1)[:, 1:].reshape(4, self.height, self.width)
+            q[...] = 0
+            A, f_A, B, f_B = q
+            task = tasks[torch.randint(len(tasks), (1,)).item()]
             task(A, f_A, B, f_B)
 
-        return prompts.flatten(1), answers.flatten(1)
+        return quizzes
 
-    def save_quizzes(
-        self,
-        result_dir,
-        filename_prefix,
-        prompts,
-        answers,
-        predicted_prompts=None,
-        predicted_answers=None,
-        nrow=4,
-    ):
-        self.save_image(
-            result_dir,
-            filename_prefix + ".png",
-            prompts,
-            answers,
-            predicted_prompts,
-            predicted_answers,
-            nrow,
-        )
+    def save_some_examples(self, result_dir, prefix=""):
+        nb, nrow = 128, 4
+        for t in self.all_tasks:
+            print(t.__name__)
+            quizzes = self.generate_w_quizzes_(nb, tasks=[t])
+            self.save_quizzes_as_image(
+                result_dir, prefix + t.__name__ + ".png", quizzes, nrow=nrow
+            )
 
 
 ######################################################################
@@ -698,32 +1757,97 @@ class Grids(problem.Problem):
 if __name__ == "__main__":
     import time
 
-    nb = 48
+    # grids = Grids(max_nb_cached_chunks=5, chunk_size=100, nb_threads=4)
 
     grids = Grids()
 
-    # for t in grids.all_tasks():
-    for t in [grids.task_islands]:
+    # nb = 5
+    # quizzes = grids.generate_w_quizzes_(nb, tasks=[grids.task_fill])
+    # print(quizzes)
+    # print(grids.get_structure(quizzes))
+    # quizzes = grids.reconfigure(quizzes, struct=("A", "B", "f_A", "f_B"))
+    # print("DEBUG2", quizzes)
+    # print(grids.get_structure(quizzes))
+    # print(quizzes)
+
+    # i = torch.rand(quizzes.size(0)) < 0.5
+
+    # quizzes[i] = grids.reconfigure(quizzes[i], struct=("f_B", "f_A", "B", "A"))
+
+    # j = grids.indices_select(quizzes, struct=("f_B", "f_A", "B", "A"))
+
+    # print(
+    # i.equal(j),
+    # grids.get_structure(quizzes[j]),
+    # grids.get_structure(quizzes[j == False]),
+    # )
+
+    #   exit(0)
+
+    # nb = 1000
+    # grids = problem.MultiThreadProblem(
+    # grids, max_nb_cached_chunks=50, chunk_size=100, nb_threads=1
+    # )
+    #    time.sleep(10)
+    # start_time = time.perf_counter()
+    # prompts, answers = grids.generate_w_quizzes(nb)
+    # delay = time.perf_counter() - start_time
+    # print(f"{prompts.size(0)/delay:02f} seq/s")
+    # exit(0)
+
+    # if True:
+    nb, nrow = 128, 4
+    # nb, nrow = 8, 2
+
+    # for t in grids.all_tasks:
+
+    for t in [grids.task_recworld_immobile]:
         print(t.__name__)
-        prompts, answers = grids.generate_prompts_and_answers(nb, tasks=[t])
-        grids.save_quizzes("/tmp", t.__name__, prompts[:nb], answers[:nb], nrow=4)
+        w_quizzes = grids.generate_w_quizzes_(nb, tasks=[t])
+        grids.save_quizzes_as_image(
+            "/tmp",
+            t.__name__ + ".png",
+            w_quizzes,
+            comments=[f"{t.__name__} #{k}" for k in range(w_quizzes.size(0))],
+        )
 
     exit(0)
 
-    nb = 72
+    nb = 1000
+
+    for t in [
+        # grids.task_bounce,
+        # grids.task_contact,
+        # grids.task_corners,
+        # grids.task_detect,
+        # grids.task_fill,
+        # grids.task_frame,
+        # grids.task_grow,
+        # grids.task_half_fill,
+        # grids.task_isometry,
+        # grids.task_path,
+        # grids.task_replace_color,
+        # grids.task_scale,
+        grids.task_symbols,
+        # grids.task_trajectory,
+        # grids.task_translate,
+    ]:
+        # for t in [grids.task_path]:
+        start_time = time.perf_counter()
+        w_quizzes = grids.generate_w_quizzes_(nb, tasks=[t])
+        delay = time.perf_counter() - start_time
+        print(f"{t.__name__} {w_quizzes.size(0)/delay:02f} seq/s")
+        grids.save_quizzes_as_image("/tmp", t.__name__ + ".png", w_quizzes[:128])
 
-    start_time = time.perf_counter()
-    prompts, answers = grids.generate_prompts_and_answers(nb)
-    delay = time.perf_counter() - start_time
-    print(f"{prompts.size(0)/delay:02f} seq/s")
+    exit(0)
 
     m = torch.randint(2, (prompts.size(0),))
     predicted_prompts = m * (torch.randint(2, (prompts.size(0),)) * 2 - 1)
     predicted_answers = (1 - m) * (torch.randint(2, (prompts.size(0),)) * 2 - 1)
 
-    grids.save_quizzes(
+    grids.save_quizzes_as_image(
         "/tmp",
-        "test",
+        "test.png",
         prompts[:nb],
         answers[:nb],
         # You can add a bool to put a frame around the predicted parts