Update.
[culture.git] / grids.py
index b40d532..eea8c6c 100755 (executable)
--- a/grids.py
+++ b/grids.py
@@ -17,6 +17,92 @@ from torch.nn import functional as F
 import problem
 
 
+def grow_islands(nb, height, width, nb_seeds, nb_iterations):
+    w = torch.empty(5, 1, 3, 3)
+
+    w[0, 0] = torch.tensor(
+        [
+            [1.0, 1.0, 1.0],
+            [1.0, 0.0, 1.0],
+            [1.0, 1.0, 1.0],
+        ]
+    )
+
+    w[1, 0] = torch.tensor(
+        [
+            [-1.0, 1.0, 0.0],
+            [1.0, 0.0, 0.0],
+            [0.0, 0.0, 0.0],
+        ]
+    )
+
+    w[2, 0] = torch.tensor(
+        [
+            [0.0, 1.0, -1.0],
+            [0.0, 0.0, 1.0],
+            [0.0, 0.0, 0.0],
+        ]
+    )
+
+    w[3, 0] = torch.tensor(
+        [
+            [0.0, 0.0, 0.0],
+            [0.0, 0.0, 1.0],
+            [0.0, 1.0, -1.0],
+        ]
+    )
+
+    w[4, 0] = torch.tensor(
+        [
+            [0.0, 0.0, 0.0],
+            [1.0, 0.0, 0.0],
+            [-1.0, 1.0, 0.0],
+        ]
+    )
+
+    Z = torch.zeros(nb, height, width)
+    U = Z.flatten(1)
+
+    for _ in range(nb_seeds):
+        M = F.conv2d(Z[:, None, :, :], w, padding=1)
+        M = torch.cat([M[:, :1], M[:, 1:].min(dim=1, keepdim=True).values], dim=1)
+        M = ((M[:, 0] == 0) & (Z == 0)).long()
+        Q = (M.flatten(1).max(dim=1).values > 0).long()[:, None]
+        M = M * torch.rand(M.size())
+        M = M.flatten(1)
+        M = F.one_hot(M.argmax(dim=1), num_classes=M.size(1))
+        U += M * Q
+
+    for _ in range(nb_iterations):
+        M = F.conv2d(Z[:, None, :, :], w, padding=1)
+        M = torch.cat([M[:, :1], M[:, 1:].min(dim=1, keepdim=True).values], dim=1)
+        M = ((M[:, 1] >= 0) & (Z == 0)).long()
+        Q = (M.flatten(1).max(dim=1).values > 0).long()[:, None]
+        M = M * torch.rand(M.size())
+        M = M.flatten(1)
+        M = F.one_hot(M.argmax(dim=1), num_classes=M.size(1))
+        U = Z.flatten(1)
+        U += M * Q
+
+    M = Z.clone()
+    Z = Z * (torch.arange(Z.size(1) * Z.size(2)) + 1).reshape(1, Z.size(1), Z.size(2))
+
+    while True:
+        W = Z.clone()
+        Z = F.max_pool2d(Z, 3, 1, 1) * M
+        if Z.equal(W):
+            break
+
+    Z = Z.long()
+    U = Z.flatten(1)
+    V = F.one_hot(U).max(dim=1).values
+    W = V.cumsum(dim=1) - V
+    N = torch.arange(Z.size(0))[:, None, None].expand_as(Z)
+    Z = W[N, Z]
+
+    return Z
+
+
 class Grids(problem.Problem):
     named_colors = [
         ("white", [255, 255, 255]),
@@ -32,11 +118,40 @@ class Grids(problem.Problem):
         ("gray", [128, 128, 128]),
     ]
 
-    def __init__(self, device=torch.device("cpu")):
+    def __init__(
+        self,
+        max_nb_cached_chunks=None,
+        chunk_size=None,
+        nb_threads=-1,
+        tasks=None,
+    ):
         self.colors = torch.tensor([c for _, c in self.named_colors])
         self.height = 10
         self.width = 10
-        self.device = device
+        self.cache_rec_coo = {}
+
+        all_tasks = [
+            self.task_replace_color,
+            self.task_translate,
+            self.task_grow,
+            self.task_half_fill,
+            self.task_frame,
+            self.task_detect,
+            self.task_count,
+            self.task_trajectory,
+            self.task_bounce,
+            self.task_scale,
+            self.task_symbols,
+            self.task_isometry,
+            #            self.task_islands,
+        ]
+
+        if tasks is None:
+            self.all_tasks = all_tasks
+        else:
+            self.all_tasks = [getattr(self, "task_" + t) for t in tasks.split(",")]
+
+        super().__init__(max_nb_cached_chunks, chunk_size, nb_threads)
 
     ######################################################################
 
@@ -65,19 +180,6 @@ class Grids(problem.Problem):
 
         return x
 
-    def frame2img_(self, x, scale=15):
-        x = x.reshape(x.size(0), self.height, -1)
-        x = self.colors[x].permute(0, 3, 1, 2)
-        s = x.shape
-        x = x[:, :, :, None, :, None].expand(-1, -1, -1, scale, -1, scale)
-        x = x.reshape(s[0], s[1], s[2] * scale, s[3] * scale)
-
-        x[:, :, :, torch.arange(0, x.size(3), scale)] = 0
-        x[:, :, torch.arange(0, x.size(2), scale), :] = 0
-        x = x[:, :, 1:, 1:]
-
-        return x
-
     def save_image(
         self,
         result_dir,
@@ -87,6 +189,7 @@ class Grids(problem.Problem):
         predicted_prompts=None,
         predicted_answers=None,
         nrow=4,
+        margin=8,
     ):
         S = self.height * self.width
         As = prompts[:, 0 * (S + 1) : 0 * (S + 1) + S].view(-1, self.height, self.width)
@@ -122,10 +225,10 @@ class Grids(problem.Problem):
                 c = c.long()[:, None]
                 c = (
                     (1 - ((c == 1).long() + (c == 0).long() + (c == -1).long()))
-                    * torch.tensor([64, 64, 64], device=c.device)
-                    + (c == 1).long() * torch.tensor([0, 255, 0], device=c.device)
-                    + (c == 0).long() * torch.tensor([255, 255, 255], device=c.device)
-                    + (c == -1).long() * torch.tensor([255, 0, 0], device=c.device)
+                    * torch.tensor([64, 64, 64])
+                    + (c == 1).long() * torch.tensor([0, 255, 0])
+                    + (c == 0).long() * torch.tensor([255, 255, 255])
+                    + (c == -1).long() * torch.tensor([255, 0, 0])
                 )
                 y[...] = c[:, :, None, None]
 
@@ -133,8 +236,6 @@ class Grids(problem.Problem):
 
             return y
 
-        margin = 8
-
         img_prompts = torch.cat(
             [
                 add_frame(
@@ -208,112 +309,160 @@ class Grids(problem.Problem):
     def nb_token_values(self):
         return len(self.colors)
 
-    # That's quite a tensorial spaghetti mess to sample
-    # non-overlapping rectangles quickly, but made the generation of
-    # 100k samples go from 1h50 with a lame pure python code to 3min30s
-    # with this one.
-    def rec_coo(self, nb_rec, min_height=3, min_width=3):
-        nb_trials = 200
+    # @torch.compile
+    def rec_coo(
+        self,
+        nb_rec,
+        min_height=3,
+        min_width=3,
+        surface_max=None,
+        prevent_overlap=False,
+    ):
+        if surface_max is None:
+            surface_max = self.height * self.width // 2
+
+        signature = (nb_rec, min_height, min_width, surface_max)
+
+        try:
+            return self.cache_rec_coo[signature].pop()
+        except IndexError:
+            pass
+        except KeyError:
+            pass
 
+        N = 10000
         while True:
-            v = (
-                (
-                    torch.rand(nb_trials * nb_rec, self.height + 1, device=self.device)
-                    .sort(dim=-1)
-                    .indices
-                    < 2
-                )
-                .long()
-                .cumsum(dim=1)
-                == 1
-            ).long()
+            while True:
+                i = torch.randint(self.height, (N * nb_rec, 2)).sort(dim=-1).values
+                j = torch.randint(self.width, (N * nb_rec, 2)).sort(dim=-1).values
 
-            h = (
-                (
-                    torch.rand(nb_trials * nb_rec, self.width + 1, device=self.device)
-                    .sort(dim=-1)
-                    .indices
-                    < 2
+                big_enough = (
+                    (i[:, 1] >= i[:, 0] + min_height)
+                    & (j[:, 1] >= j[:, 0] + min_height)
+                    & ((i[:, 1] - i[:, 0]) * (j[:, 1] - j[:, 0]) <= surface_max)
                 )
-                .long()
-                .cumsum(dim=1)
-                == 1
-            ).long()
-
-            i = torch.logical_and(
-                v.sum(dim=-1) >= min_height, h.sum(dim=-1) >= min_width
-            )
 
-            v, h = v[i], h[i]
-            v = v[: v.size(0) - v.size(0) % nb_rec]
-            h = h[: h.size(0) - h.size(0) % nb_rec]
-            v = v.reshape(v.size(0) // nb_rec, nb_rec, -1)
-            h = h.reshape(h.size(0) // nb_rec, nb_rec, -1)
+                i, j = i[big_enough], j[big_enough]
 
-            r = v[:, :, :, None] * h[:, :, None, :]
+                n = i.size(0) - i.size(0) % nb_rec
 
-            valid = r.sum(dim=1).flatten(1).max(dim=-1).values == 1
+                if n > 0:
+                    break
 
-            v = v[valid]
-            h = h[valid]
+            i = i[:n].reshape(n // nb_rec, nb_rec, -1)
+            j = j[:n].reshape(n // nb_rec, nb_rec, -1)
+
+            if prevent_overlap:
+                can_fit = ((i[:, :, 1] - i[:, :, 0]) * (j[:, :, 1] - j[:, :, 0])).sum(
+                    dim=-1
+                ) <= self.height * self.width
+                i, j = i[can_fit], j[can_fit]
+                if nb_rec == 2:
+                    A_i1, A_i2, A_j1, A_j2 = (
+                        i[:, 0, 0],
+                        i[:, 0, 1],
+                        j[:, 0, 0],
+                        j[:, 0, 1],
+                    )
+                    B_i1, B_i2, B_j1, B_j2 = (
+                        i[:, 1, 0],
+                        i[:, 1, 1],
+                        j[:, 1, 0],
+                        j[:, 1, 1],
+                    )
+                    no_overlap = torch.logical_not(
+                        (A_i1 >= B_i2)
+                        & (A_i2 <= B_i1)
+                        & (A_j1 >= B_j1)
+                        & (A_j2 <= B_j1)
+                    )
+                    i, j = i[no_overlap], j[no_overlap]
+                elif nb_rec == 3:
+                    A_i1, A_i2, A_j1, A_j2 = (
+                        i[:, 0, 0],
+                        i[:, 0, 1],
+                        j[:, 0, 0],
+                        j[:, 0, 1],
+                    )
+                    B_i1, B_i2, B_j1, B_j2 = (
+                        i[:, 1, 0],
+                        i[:, 1, 1],
+                        j[:, 1, 0],
+                        j[:, 1, 1],
+                    )
+                    C_i1, C_i2, C_j1, C_j2 = (
+                        i[:, 2, 0],
+                        i[:, 2, 1],
+                        j[:, 2, 0],
+                        j[:, 2, 1],
+                    )
+                    no_overlap = (
+                        (
+                            (A_i1 >= B_i2)
+                            | (A_i2 <= B_i1)
+                            | (A_j1 >= B_j2)
+                            | (A_j2 <= B_j1)
+                        )
+                        & (
+                            (A_i1 >= C_i2)
+                            | (A_i2 <= C_i1)
+                            | (A_j1 >= C_j2)
+                            | (A_j2 <= C_j1)
+                        )
+                        & (
+                            (B_i1 >= C_i2)
+                            | (B_i2 <= C_i1)
+                            | (B_j1 >= C_j2)
+                            | (B_j2 <= C_j1)
+                        )
+                    )
+                    i, j = (i[no_overlap], j[no_overlap])
+                else:
+                    assert nb_rec == 1
 
-            if v.size(0) > 0:
+            if i.size(0) > 1:
                 break
 
-        av = torch.arange(v.size(2), device=self.device)[None, :]
-        ah = torch.arange(h.size(2), device=self.device)[None, :]
-
-        return [
-            (i1.item(), j1.item(), i2.item() + 1, j2.item() + 1)
-            for i1, j1, i2, j2 in zip(
-                v.size(2) - (v[0] * (v.size(2) - av)).max(dim=-1).values,
-                h.size(2) - (h[0] * (h.size(2) - ah)).max(dim=-1).values,
-                (v[0] * av).max(dim=-1).values,
-                (h[0] * ah).max(dim=-1).values,
-            )
+        self.cache_rec_coo[signature] = [
+            [
+                (
+                    i[n, k, 0].item(),
+                    j[n, k, 0].item(),
+                    i[n, k, 1].item(),
+                    j[n, k, 1].item(),
+                )
+                for k in range(nb_rec)
+            ]
+            for n in range(i.size(0))
         ]
 
-    def rec_coo_(self, x, n, min_height=3, min_width=3):
-        collision = x.new(x.size())
-        while True:
-            collision[...] = 0
-            result = []
-            for _ in range(n):
-                while True:
-                    i1, i2 = torch.randint(x.size(0), (2,))
-                    if i1 + min_height <= i2:
-                        break
-                while True:
-                    j1, j2 = torch.randint(x.size(1), (2,))
-                    if j1 + min_width <= j2:
-                        break
-                collision[i1:i2, j1:j2] += 1
-                if collision.max() > 1:
-                    break
-                result.append((i1, j1, i2, j2))
-            if collision.max() == 1:
-                break
-        return result
+        return self.cache_rec_coo[signature].pop()
 
     ######################################################################
 
+    # @torch.compile
     def task_replace_color(self, A, f_A, B, f_B):
         nb_rec = 3
         c = torch.randperm(len(self.colors) - 1)[: nb_rec + 1] + 1
         for X, f_X in [(A, f_A), (B, f_B)]:
-            r = self.rec_coo(nb_rec)
+            r = self.rec_coo(nb_rec, prevent_overlap=True)
             for n in range(nb_rec):
                 i1, j1, i2, j2 = r[n]
                 X[i1:i2, j1:j2] = c[n]
                 f_X[i1:i2, j1:j2] = c[n if n > 0 else -1]
 
+    # @torch.compile
     def task_translate(self, A, f_A, B, f_B):
-        di, dj = torch.randint(3, (2,)) - 1
+        while True:
+            di, dj = torch.randint(3, (2,)) - 1
+            if di.abs() + dj.abs() > 0:
+                break
+
         nb_rec = 3
         c = torch.randperm(len(self.colors) - 1)[:nb_rec] + 1
         for X, f_X in [(A, f_A), (B, f_B)]:
             while True:
-                r = self.rec_coo(nb_rec)
+                r = self.rec_coo(nb_rec, prevent_overlap=True)
                 i1, j1, i2, j2 = r[nb_rec - 1]
                 if (
                     i1 + di >= 0
@@ -331,14 +480,15 @@ class Grids(problem.Problem):
                 else:
                     f_X[i1:i2, j1:j2] = c[n]
 
+    # @torch.compile
     def task_grow(self, A, f_A, B, f_B):
         di, dj = torch.randint(2, (2,)) * 2 - 1
         nb_rec = 3
         c = torch.randperm(len(self.colors) - 1)[:nb_rec] + 1
-        direction = torch.randint(2, (1,))
+        direction = torch.randint(2, (1,)).item()
         for X, f_X in [(A, f_A), (B, f_B)]:
             while True:
-                r = self.rec_coo(nb_rec)
+                r = self.rec_coo(nb_rec, prevent_overlap=True)
                 i1, j1, i2, j2 = r[nb_rec - 1]
                 if i1 + 3 < i2 and j1 + 3 < j2:
                     break
@@ -356,13 +506,14 @@ class Grids(problem.Problem):
                     X[i1:i2, j1:j2] = c[n]
                     f_X[i1:i2, j1:j2] = c[n]
 
-    def task_color_grow(self, A, f_A, B, f_B):
+    # @torch.compile
+    def task_half_fill(self, A, f_A, B, f_B):
         di, dj = torch.randint(2, (2,)) * 2 - 1
         nb_rec = 3
         c = torch.randperm(len(self.colors) - 1)[: 2 * nb_rec] + 1
-        direction = torch.randint(4, (1,))
+        direction = torch.randint(4, (1,)).item()
         for X, f_X in [(A, f_A), (B, f_B)]:
-            r = self.rec_coo(nb_rec)
+            r = self.rec_coo(nb_rec, prevent_overlap=True)
             for n in range(nb_rec):
                 i1, j1, i2, j2 = r[n]
                 X[i1:i2, j1:j2] = c[2 * n]
@@ -397,29 +548,36 @@ class Grids(problem.Problem):
                     else:
                         f_X[i1:i2, j : j + 1] = c[2 * n + 1]
 
+    # @torch.compile
     def task_frame(self, A, f_A, B, f_B):
         nb_rec = 3
         c = torch.randperm(len(self.colors) - 1)[: nb_rec + 1] + 1
         for X, f_X in [(A, f_A), (B, f_B)]:
-            r = self.rec_coo(nb_rec)
+            r = self.rec_coo(nb_rec, prevent_overlap=True)
             for n in range(nb_rec):
                 i1, j1, i2, j2 = r[n]
                 X[i1:i2, j1:j2] = c[n]
-                f_X[i1:i2, j1:j2] = c[n]
                 if n == nb_rec - 1:
-                    f_X[i1 + 1 : i2 - 1, j1 + 1 : j2 - 1] = 0
+                    f_X[i1:i2, j1] = c[n]
+                    f_X[i1:i2, j2 - 1] = c[n]
+                    f_X[i1, j1:j2] = c[n]
+                    f_X[i2 - 1, j1:j2] = c[n]
+                else:
+                    f_X[i1:i2, j1:j2] = c[n]
 
+    # @torch.compile
     def task_detect(self, A, f_A, B, f_B):
         nb_rec = 3
         c = torch.randperm(len(self.colors) - 1)[: nb_rec + 1] + 1
         for X, f_X in [(A, f_A), (B, f_B)]:
-            r = self.rec_coo(nb_rec)
+            r = self.rec_coo(nb_rec, prevent_overlap=True)
             for n in range(nb_rec):
                 i1, j1, i2, j2 = r[n]
                 X[i1:i2, j1:j2] = c[n]
                 if n < nb_rec - 1:
                     f_X[i1, j1] = c[-1]
 
+    # @torch.compile
     def contact(self, X, i, j, q):
         nq, nq_diag = 0, 0
         no = 0
@@ -456,34 +614,61 @@ class Grids(problem.Problem):
         return no, nq, nq_diag
 
     def task_count(self, A, f_A, B, f_B):
-        N = torch.randint(4, (1,)) + 2
-        c = torch.randperm(len(self.colors) - 1)[:N] + 1
+        while True:
+            error = False
+
+            N = torch.randint(5, (1,)).item() + 1
+            c = torch.zeros(N + 1)
+            c[1:] = torch.randperm(len(self.colors) - 1)[:N] + 1
+
+            for X, f_X in [(A, f_A), (B, f_B)]:
+                if not hasattr(self, "cache_count") or len(self.cache_count) == 0:
+                    self.cache_count = list(
+                        grow_islands(
+                            1000,
+                            self.height,
+                            self.width,
+                            nb_seeds=self.height * self.width // 8,
+                            nb_iterations=self.height * self.width // 10,
+                        )
+                    )
 
-        for X, f_X in [(A, f_A), (B, f_B)]:
-            nb = torch.zeros(N, dtype=torch.int64)
-            q = torch.randint(N, (self.height * self.width,))
-            k = torch.randperm(self.height * self.width)
-            for p in range(self.height * self.width):
-                i, j = k[p] % self.height, k[p] // self.height
-                no, nq, nq_diag = self.contact(X, i, j, c[q[p]])
-                if no == 0 and nq_diag == 0:
-                    if nq == 0:
-                        if nb[q[p]] < self.width:
-                            X[i, j] = c[q[p]]
-                            nb[q[p]] += 1
-                    if nq == 1:
-                        X[i, j] = c[q[p]]
-
-            for n in range(N):
-                for j in range(nb[n]):
-                    f_X[n, j] = c[n]
+                X[...] = self.cache_count.pop()
+
+                k = (X.max() + 1 + (c.size(0) - 1)).item()
+                V = torch.arange(k) // (c.size(0) - 1)
+                V = (V + torch.rand(V.size())).sort().indices[: X.max() + 1] % (
+                    c.size(0) - 1
+                ) + 1
+                V[0] = 0
+                X[...] = c[V[X]]
+
+                if F.one_hot(X.flatten()).max(dim=0).values.sum().item() == N + 1:
+                    f_X[...] = 0
+                    for e in range(1, N + 1):
+                        for j in range((X == c[e]).sum() + 1):
+                            if j < self.width:
+                                f_X[e - 1, j] = c[e]
+                            else:
+                                error = True
+                                break
+                else:
+                    error = True
+                    break
 
+            if not error:
+                break
+
+    # @torch.compile
     def task_trajectory(self, A, f_A, B, f_B):
         c = torch.randperm(len(self.colors) - 1)[:2] + 1
         for X, f_X in [(A, f_A), (B, f_B)]:
             while True:
                 di, dj = torch.randint(7, (2,)) - 3
-                i, j = torch.randint(self.height, (1,)), torch.randint(self.width, (1,))
+                i, j = (
+                    torch.randint(self.height, (1,)).item(),
+                    torch.randint(self.width, (1,)).item(),
+                )
                 if (
                     abs(di) + abs(dj) > 0
                     and i + 2 * di >= 0
@@ -505,10 +690,11 @@ class Grids(problem.Problem):
                 f_X[i + k * di, j + k * dj] = c[min(k, 1)]
                 k += 1
 
+    # @torch.compile
     def task_bounce(self, A, f_A, B, f_B):
         c = torch.randperm(len(self.colors) - 1)[:3] + 1
         for X, f_X in [(A, f_A), (B, f_B)]:
-
+            # @torch.compile
             def free(i, j):
                 return (
                     i >= 0
@@ -523,8 +709,9 @@ class Grids(problem.Problem):
                 X[...] = 0
 
                 for _ in range((self.height * self.width) // 10):
-                    i, j = torch.randint(self.height, (1,)), torch.randint(
-                        self.width, (1,)
+                    i, j = (
+                        torch.randint(self.height, (1,)).item(),
+                        torch.randint(self.width, (1,)).item(),
                     )
                     X[i, j] = c[0]
                     f_X[i, j] = c[0]
@@ -534,7 +721,10 @@ class Grids(problem.Problem):
                     if abs(di) + abs(dj) == 1:
                         break
 
-                i, j = torch.randint(self.height, (1,)), torch.randint(self.width, (1,))
+                i, j = (
+                    torch.randint(self.height, (1,)).item(),
+                    torch.randint(self.width, (1,)).item(),
+                )
 
                 X[i, j] = c[1]
                 f_X[i, j] = c[1]
@@ -568,21 +758,25 @@ class Grids(problem.Problem):
                 if l > 3:
                     break
 
+    # @torch.compile
     def task_scale(self, A, f_A, B, f_B):
         c = torch.randperm(len(self.colors) - 1)[:2] + 1
 
-        i, j = torch.randint(self.height // 2, (1,)), torch.randint(
-            self.width // 2, (1,)
+        i, j = (
+            torch.randint(self.height // 2, (1,)).item(),
+            torch.randint(self.width // 2, (1,)).item(),
         )
 
         for X, f_X in [(A, f_A), (B, f_B)]:
             for _ in range(3):
                 while True:
-                    i1, j1 = torch.randint(self.height // 2 + 1, (1,)), torch.randint(
-                        self.width // 2 + 1, (1,)
+                    i1, j1 = (
+                        torch.randint(self.height // 2 + 1, (1,)).item(),
+                        torch.randint(self.width // 2 + 1, (1,)).item(),
                     )
-                    i2, j2 = torch.randint(self.height // 2 + 1, (1,)), torch.randint(
-                        self.width // 2 + 1, (1,)
+                    i2, j2 = (
+                        torch.randint(self.height // 2 + 1, (1,)).item(),
+                        torch.randint(self.width // 2 + 1, (1,)).item(),
                     )
                     if i1 < i2 and j1 < j2 and min(i2 - i1, j2 - j1) <= 3:
                         break
@@ -592,79 +786,322 @@ class Grids(problem.Problem):
             X[i, j] = c[1]
             f_X[0:2, 0:2] = c[1]
 
-    def task_islands(self, A, f_A, B, f_B):
+    # @torch.compile
+    def task_symbols(self, A, f_A, B, f_B):
+        nb_rec = 4
+        c = torch.randperm(len(self.colors) - 1)[: nb_rec + 1] + 1
+        delta = 3
         for X, f_X in [(A, f_A), (B, f_B)]:
             while True:
-                i, j = torch.randint(self.height, (1,)), torch.randint(self.width, (1,))
+                i, j = torch.randint(self.height - delta + 1, (nb_rec,)), torch.randint(
+                    self.width - delta + 1, (nb_rec,)
+                )
+                d = (i[None, :] - i[:, None]).abs().max((j[None, :] - j[:, None]).abs())
+                d.fill_diagonal_(delta + 1)
+                if d.min() > delta:
+                    break
+
+            for k in range(1, nb_rec):
+                X[i[k] : i[k] + delta, j[k] : j[k] + delta] = c[k]
+
+            ai, aj = i.float().mean(), j.float().mean()
+
+            q = torch.randint(3, (1,)).item() + 1
+
+            X[i[0] + delta // 2 - 1, j[0] + delta // 2 - 1] = c[0]
+            X[i[0] + delta // 2 - 1, j[0] + delta // 2 + 1] = c[0]
+            X[i[0] + delta // 2 + 1, j[0] + delta // 2 - 1] = c[0]
+            X[i[0] + delta // 2 + 1, j[0] + delta // 2 + 1] = c[0]
+
+            assert i[q] != ai and j[q] != aj
+
+            X[
+                i[0] + delta // 2 + (i[q] - ai).sign().long(),
+                j[0] + delta // 2 + (j[q] - aj).sign().long(),
+            ] = c[nb_rec]
+
+            f_X[i[0] : i[0] + delta, j[0] : j[0] + delta] = c[q]
+
+    # @torch.compile
+    def task_isometry(self, A, f_A, B, f_B):
+        nb_rec = 3
+        di, dj = torch.randint(3, (2,)) - 1
+        o = torch.tensor([[0.0, 1.0], [-1.0, 0.0]])
+        m = torch.eye(2)
+        for _ in range(torch.randint(4, (1,)).item()):
+            m = m @ o
+        if torch.rand(1) < 0.5:
+            m[0, :] = -m[0, :]
+
+        ci, cj = (self.height - 1) / 2, (self.width - 1) / 2
+
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            while True:
+                X[...] = 0
+                f_X[...] = 0
+
+                c = torch.randperm(len(self.colors) - 1)[:nb_rec] + 1
+
+                for r in range(nb_rec):
+                    while True:
+                        i1, i2 = torch.randint(self.height - 2, (2,)) + 1
+                        j1, j2 = torch.randint(self.width - 2, (2,)) + 1
+                        if (
+                            i2 >= i1
+                            and j2 >= j1
+                            and max(i2 - i1, j2 - j1) >= 2
+                            and min(i2 - i1, j2 - j1) <= 3
+                        ):
+                            break
+                    X[i1 : i2 + 1, j1 : j2 + 1] = c[r]
+
+                    i1, j1, i2, j2 = i1 - ci, j1 - cj, i2 - ci, j2 - cj
+
+                    i1, j1 = m[0, 0] * i1 + m[0, 1] * j1, m[1, 0] * i1 + m[1, 1] * j1
+                    i2, j2 = m[0, 0] * i2 + m[0, 1] * j2, m[1, 0] * i2 + m[1, 1] * j2
+
+                    i1, j1, i2, j2 = i1 + ci, j1 + cj, i2 + ci, j2 + cj
+                    i1, i2 = i1.long() + di, i2.long() + di
+                    j1, j2 = j1.long() + dj, j2.long() + dj
+                    if i1 > i2:
+                        i1, i2 = i2, i1
+                    if j1 > j2:
+                        j1, j2 = j2, j1
+
+                    f_X[i1 : i2 + 1, j1 : j2 + 1] = c[r]
+
+                n = F.one_hot(X.flatten()).sum(dim=0)[1:]
                 if (
-                    i == 0
-                    or i == self.height - 1
-                    or j == 0
-                    or j == self.width - 1
-                    or X[i, j] == 1
+                    n.sum() > self.height * self.width // 4
+                    and (n > 0).long().sum() == nb_rec
                 ):
                     break
+
+    def compute_distance(self, walls, goal_i, goal_j):
+        max_length = walls.numel()
+        dist = torch.full_like(walls, max_length)
+
+        dist[goal_i, goal_j] = 0
+        pred_dist = torch.empty_like(dist)
+
+        while True:
+            pred_dist.copy_(dist)
+            dist[1:-1, 1:-1] = (
+                torch.cat(
+                    (
+                        dist[None, 1:-1, 1:-1],
+                        dist[None, 1:-1, 0:-2],
+                        dist[None, 2:, 1:-1],
+                        dist[None, 1:-1, 2:],
+                        dist[None, 0:-2, 1:-1],
+                    ),
+                    0,
+                ).min(dim=0)[0]
+                + 1
+            )
+
+            dist = walls * max_length + (1 - walls) * dist
+
+            if dist.equal(pred_dist):
+                return dist * (1 - walls)
+
+    # @torch.compile
+    def task_distance(self, A, f_A, B, f_B):
+        c = torch.randperm(len(self.colors) - 1)[:3] + 1
+        dist0 = torch.empty(self.height + 2, self.width + 2)
+        dist1 = torch.empty(self.height + 2, self.width + 2)
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            nb_rec = torch.randint(3, (1,)).item() + 1
             while True:
-                di, dj = torch.randint(3, (2,)) - 1
-                if abs(di) + abs(dj) > 0:
+                r = self.rec_coo(nb_rec, prevent_overlap=True)
+                X[...] = 0
+                f_X[...] = 0
+                for n in range(nb_rec):
+                    i1, j1, i2, j2 = r[n]
+                    X[i1:i2, j1:j2] = c[0]
+                    f_X[i1:i2, j1:j2] = c[0]
+                while True:
+                    i0, j0 = (
+                        torch.randint(self.height, (1,)).item(),
+                        torch.randint(self.width, (1,)).item(),
+                    )
+                    if X[i0, j0] == 0:
+                        break
+                while True:
+                    i1, j1 = (
+                        torch.randint(self.height, (1,)).item(),
+                        torch.randint(self.width, (1,)).item(),
+                    )
+                    if X[i1, j1] == 0:
+                        break
+                dist1[...] = 1
+                dist1[1:-1, 1:-1] = (X != 0).long()
+                dist1[...] = self.compute_distance(dist1, i1 + 1, j1 + 1)
+                if (
+                    dist1[i0 + 1, j0 + 1] >= 1
+                    and dist1[i0 + 1, j0 + 1] < self.height * 4
+                ):
                     break
-            X[i, j] = 1
+
+            dist0[...] = 1
+            dist0[1:-1, 1:-1] = (X != 0).long()
+            dist0[...] = self.compute_distance(dist0, i0 + 1, j0 + 1)
+
+            dist0 = dist0[1:-1, 1:-1]
+            dist1 = dist1[1:-1, 1:-1]
+
+            D = dist1[i0, j0]
+            for d in range(1, D):
+                M = (dist0 == d) & (dist1 == D - d)
+                f_X[...] = (1 - M) * f_X + M * c[1]
+
+            X[i0, j0] = c[2]
+            f_X[i0, j0] = c[2]
+            X[i1, j1] = c[2]
+            f_X[i1, j1] = c[2]
+
+    # for X, f_X in [(A, f_A), (B, f_B)]:
+    # n = torch.arange(self.height * self.width).reshape(self.height, self.width)
+    # k = torch.randperm(self.height * self.width)
+    # X[...]=-1
+    # for q in k:
+    # i,j=q%self.height,q//self.height
+    # if
+
+    # @torch.compile
+    def task_puzzle(self, A, f_A, B, f_B):
+        S = 4
+        i0, j0 = (self.height - S) // 2, (self.width - S) // 2
+        c = torch.randperm(len(self.colors) - 1)[:4] + 1
+        for X, f_X in [(A, f_A), (B, f_B)]:
             while True:
-                i, j = i + di, j + dj
-                if i < 0 or i >= self.height or j < 0 or j >= self.width:
+                f_X[...] = 0
+                h = list(torch.randperm(c.size(0)))
+                n = torch.zeros(c.max() + 1)
+                for _ in range(2):
+                    k = torch.randperm(S * S)
+                    for q in k:
+                        i, j = q % S + i0, q // S + j0
+                        if f_X[i, j] == 0:
+                            r, s, t, u = (
+                                f_X[i - 1, j],
+                                f_X[i, j - 1],
+                                f_X[i + 1, j],
+                                f_X[i, j + 1],
+                            )
+                            r, s, t, u = torch.tensor([r, s, t, u])[torch.randperm(4)]
+                            if r > 0 and n[r] < 6:
+                                n[r] += 1
+                                f_X[i, j] = r
+                            elif s > 0 and n[s] < 6:
+                                n[s] += 1
+                                f_X[i, j] = s
+                            elif t > 0 and n[t] < 6:
+                                n[t] += 1
+                                f_X[i, j] = t
+                            elif u > 0 and n[u] < 6:
+                                n[u] += 1
+                                f_X[i, j] = u
+                            else:
+                                if len(h) > 0:
+                                    d = c[h.pop()]
+                                    n[d] += 1
+                                    f_X[i, j] = d
+
+                if n.sum() == S * S:
                     break
-                b = (
-                    i == 0
-                    or i == self.height - 1
-                    or j == 0
-                    or j == self.width - 1
-                    or X[i, j] == 1
+
+            k = 0
+            for d in range(4):
+                while True:
+                    ii, jj = (
+                        torch.randint(self.height, (1,)).item(),
+                        torch.randint(self.width, (1,)).item(),
+                    )
+                    e = 0
+                    for i in range(S):
+                        for j in range(S):
+                            if (
+                                ii + i >= self.height
+                                or jj + j >= self.width
+                                or (
+                                    f_X[i + i0, j + j0] == c[d]
+                                    and X[ii + i, jj + j] > 0
+                                )
+                            ):
+                                e = 1
+                    if e == 0:
+                        break
+                for i in range(S):
+                    for j in range(S):
+                        if f_X[i + i0, j + j0] == c[d]:
+                            X[ii + i, jj + j] = c[d]
+
+    def task_islands(self, A, f_A, B, f_B):
+        c = torch.randperm(len(self.colors) - 1)[:2] + 1
+        for X, f_X in [(A, f_A), (B, f_B)]:
+            if not hasattr(self, "cache_islands") or len(self.cache_islands) == 0:
+                self.cache_islands = list(
+                    grow_islands(
+                        1000,
+                        self.height,
+                        self.width,
+                        nb_seeds=self.height * self.width // 20,
+                        nb_iterations=self.height * self.width // 2,
+                    )
                 )
-                X[i, j] = 1
-                if b:
+
+            A = self.cache_islands.pop()
+
+            while True:
+                i, j = (
+                    torch.randint(self.height // 2, (1,)).item(),
+                    torch.randint(self.width // 2, (1,)).item(),
+                )
+                if A[i, j] > 0:
                     break
 
+            X[...] = (A > 0) * c[0]
+            X[i, j] = c[1]
+            f_X[...] = (A == A[i, j]) * c[1] + ((A > 0) & (A != A[i, j])) * c[0]
+
     ######################################################################
 
-    def all_tasks(self):
-        return [
-            self.task_replace_color,
-            self.task_translate,
-            self.task_grow,
-            self.task_color_grow,
-            self.task_frame,
-            self.task_detect,
-            self.task_count,
-            self.task_trajectory,
-            self.task_bounce,
-            self.task_scale,
-            # self.task_islands,
-        ]
+    def trivial_prompts_and_answers(self, prompts, answers):
+        S = self.height * self.width
+        Bs = prompts[:, 2 * (S + 1) : 2 * (S + 1) + S]
+        f_Bs = answers
+        return (Bs == f_Bs).long().min(dim=-1).values > 0
 
-    def generate_prompts_and_answers(self, nb, tasks=None, device="cpu"):
+    def generate_prompts_and_answers_(self, nb, tasks=None, progress_bar=False):
         if tasks is None:
-            tasks = self.all_tasks()
+            tasks = self.all_tasks
 
         S = self.height * self.width
         prompts = torch.zeros(nb, 3 * S + 2, dtype=torch.int64)
         answers = torch.zeros(nb, S, dtype=torch.int64)
 
-        for prompt, answer in tqdm.tqdm(
-            zip(prompts, answers),
-            dynamic_ncols=True,
-            desc="world generation",
-            total=prompts.size(0),
-        ):
+        bunch = zip(prompts, answers)
+
+        if progress_bar:
+            bunch = tqdm.tqdm(
+                bunch,
+                dynamic_ncols=True,
+                desc="world generation",
+                total=prompts.size(0),
+            )
+
+        for prompt, answer in bunch:
             A = prompt[0 * (S + 1) : 0 * (S + 1) + S].view(self.height, self.width)
             f_A = prompt[1 * (S + 1) : 1 * (S + 1) + S].view(self.height, self.width)
             B = prompt[2 * (S + 1) : 2 * (S + 1) + S].view(self.height, self.width)
             f_B = answer.view(self.height, self.width)
-            task = tasks[torch.randint(len(tasks), (1,))]
+            task = tasks[torch.randint(len(tasks), (1,)).item()]
             task(A, f_A, B, f_B)
 
         return prompts.flatten(1), answers.flatten(1)
 
-    def save_quizzes(
+    def save_quiz_illustrations(
         self,
         result_dir,
         filename_prefix,
@@ -684,36 +1121,65 @@ class Grids(problem.Problem):
             nrow,
         )
 
+    def save_some_examples(self, result_dir):
+        nb, nrow = 72, 4
+        for t in self.all_tasks:
+            print(t.__name__)
+            prompts, answers = self.generate_prompts_and_answers_(nb, tasks=[t])
+            self.save_quiz_illustrations(
+                result_dir, t.__name__, prompts[:nb], answers[:nb], nrow=nrow
+            )
+
 
 ######################################################################
 
 if __name__ == "__main__":
     import time
 
-    nb = 48
-
+    # grids = Grids(max_nb_cached_chunks=5, chunk_size=100, nb_threads=4)
     grids = Grids()
 
-    for t in grids.all_tasks():
-        # for t in [grids.task_islands]:
+    # nb = 1000
+    # grids = problem.MultiThreadProblem(
+    # grids, max_nb_cached_chunks=50, chunk_size=100, nb_threads=1
+    # )
+    #    time.sleep(10)
+    # start_time = time.perf_counter()
+    # prompts, answers = grids.generate_prompts_and_answers(nb)
+    # delay = time.perf_counter() - start_time
+    # print(f"{prompts.size(0)/delay:02f} seq/s")
+    # exit(0)
+
+    # if True:
+    nb, nrow = 72, 4
+    # nb, nrow = 8, 2
+
+    # for t in grids.all_tasks:
+    for t in [grids.task_distance]:
         print(t.__name__)
-        prompts, answers = grids.generate_prompts_and_answers(nb, tasks=[t])
-        grids.save_quizzes("/tmp", t.__name__, prompts[:nb], answers[:nb], nrow=4)
+        prompts, answers = grids.generate_prompts_and_answers_(nb, tasks=[t])
+        grids.save_quiz_illustrations(
+            "/tmp", t.__name__, prompts[:nb], answers[:nb], nrow=nrow
+        )
 
-    exit(0)
+    exit(0)
 
-    nb = 72
+    nb = 1000
 
-    start_time = time.perf_counter()
-    prompts, answers = grids.generate_prompts_and_answers(nb)
-    delay = time.perf_counter() - start_time
-    print(f"{prompts.size(0)/delay:02f} seq/s")
+    # for t in grids.all_tasks:
+    for t in [grids.task_distance]:
+        start_time = time.perf_counter()
+        prompts, answers = grids.generate_prompts_and_answers_(nb, tasks=[t])
+        delay = time.perf_counter() - start_time
+        print(f"{t.__name__} {prompts.size(0)/delay:02f} seq/s")
+
+    exit(0)
 
     m = torch.randint(2, (prompts.size(0),))
     predicted_prompts = m * (torch.randint(2, (prompts.size(0),)) * 2 - 1)
     predicted_answers = (1 - m) * (torch.randint(2, (prompts.size(0),)) * 2 - 1)
 
-    grids.save_quizzes(
+    grids.save_quiz_illustrations(
         "/tmp",
         "test",
         prompts[:nb],