Update.
[culture.git] / tasks.py
index 0345bd0..8680ba1 100755 (executable)
--- a/tasks.py
+++ b/tasks.py
@@ -75,2024 +75,6 @@ class Task:
         pass
 
 
-class TaskFromFile(Task):
-    def tensorize(self, pairs, shuffle):
-        len_max = max([len(x[0]) for x in pairs])
-
-        input = torch.cat(
-            [
-                torch.tensor(
-                    [
-                        [self.char2id[c] for c in s[0] + "#" * (len_max - len(s[0]))]
-                        for s in pairs
-                    ]
-                )
-            ],
-            0,
-        ).to("cpu")
-
-        pred_mask = torch.cat(
-            [
-                torch.tensor(
-                    [
-                        [int(c) for c in s[1] + "0" * (len_max - len(s[1]))]
-                        for s in pairs
-                    ]
-                )
-            ],
-            0,
-        ).to("cpu")
-
-        if shuffle:
-            i = torch.randperm(input.size(0))
-            input = input[i].contiguous()
-            pred_mask = pred_mask[i].contiguous()
-
-        return input, pred_mask
-
-    # trim all the tensors in the tuple z to remove as much token from
-    # left and right in the first tensor. If z is a tuple, all its
-    # elements are trimed according to the triming for the first
-    def trim(self, z, token="#"):
-        n = self.char2id[token]
-        if type(z) == tuple:
-            x = z[0]
-            i = (1 - (F.pad(x, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
-            a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
-            return tuple([t[:, a:b] for t in z])
-        else:
-            i = (1 - (F.pad(z, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
-            a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
-            return z[:, a:b]
-
-    def __init__(
-        self,
-        train_filename,
-        test_filename,
-        nb_train_samples,
-        nb_test_samples,
-        batch_size,
-        shuffle=False,
-        device=torch.device("cpu"),
-    ):
-        self.batch_size = batch_size
-        self.device = device
-
-        def read_file(filename, nb=-1):
-            pairs = []
-            with open(filename, "r") as f:
-                while True:
-                    sequence = f.readline().strip()
-                    if not sequence:
-                        break
-                    pred_mask = f.readline().strip()
-                    assert len(sequence) == len(pred_mask)
-                    assert set(pred_mask).issubset({"0", "1", "2"}), f"{set(pred_mask)}"
-                    pairs.append((sequence, pred_mask))
-                    if len(pairs) == nb:
-                        break
-
-            if nb > 0:
-                pairs = pairs[:nb]
-                assert len(pairs) == nb
-
-            return pairs
-
-        train_pairs = read_file(train_filename, nb_train_samples)
-        test_pairs = read_file(test_filename, nb_test_samples)
-
-        symbols = ["#"] + list(
-            set("".join([x[0] for x in train_pairs + test_pairs])) - set(["#"])
-        )
-        self.char2id = dict([(c, n) for n, c in enumerate(symbols)])
-        self.id2char = dict([(n, c) for c, n in self.char2id.items()])
-
-        self.train_input, self.train_pred_masks = self.tensorize(
-            train_pairs, shuffle=shuffle
-        )
-        self.test_input, self.test_pred_masks = self.tensorize(
-            test_pairs, shuffle=shuffle
-        )
-
-    def batches(self, split="train", nb_to_use=-1, desc=None):
-        assert split in {"train", "test"}
-        input = self.train_input if split == "train" else self.test_input
-        if nb_to_use > 0:
-            input = input[:nb_to_use]
-        if desc is None:
-            desc = f"epoch-{split}"
-        for batch in tqdm.tqdm(
-            input.split(self.batch_size), dynamic_ncols=True, desc=desc
-        ):
-            yield self.trim(batch).to(self.device)
-
-    def vocabulary_size(self):
-        return len(self.char2id)
-
-    def tensor2str(self, t):
-        return ["".join([self.id2char[x.item()] for x in s]) for s in t]
-
-    def produce_results(
-        self, n_epoch, model, result_dir, logger, deterministic_synthesis
-    ):
-        correct = self.trim(self.test_input[:1000]).to(self.device)
-        result = correct.clone()
-        pred_mask = self.test_pred_masks[:1000, : result.size(1)].to(self.device)
-        ar_mask = (pred_mask > 0).long()
-        result *= 1 - ar_mask  # paraaaaanoiaaaaaaa
-
-        logger(f"----------------------------------------------------------")
-
-        for e in self.tensor2str(result[:50]):
-            logger(f"test_before {e}")
-
-        masked_inplace_autoregression(
-            model,
-            self.batch_size,
-            result,
-            ar_mask,
-            deterministic_synthesis,
-            device=self.device,
-        )
-
-        logger(f"----------------------------------------------------------")
-
-        for e, c in zip(self.tensor2str(result[:50]), self.tensor2str(correct[:50])):
-            logger(f"test_after  {e}")
-            logger(f"correct     {c}")
-
-        logger(f"----------------------------------------------------------")
-
-        err_mask = (pred_mask == 2).long()
-        nb_total = err_mask.sum().item()
-        nb_correct = ((correct == result).long() * err_mask).sum().item()
-
-        logger(f"test_performance {n_epoch} {nb_total=} {nb_correct=}")
-        logger(f"main_test_accuracy {n_epoch} {nb_correct / nb_total}")
-
-
-####################
-
-import problems
-
-
-class SandBox(Task):
-    def __init__(
-        self,
-        problem,
-        nb_train_samples,
-        nb_test_samples,
-        batch_size,
-        logger=None,
-        device=torch.device("cpu"),
-        max_nb_codes=1024,
-    ):
-        super().__init__()
-
-        self.batch_size = batch_size
-        self.device = device
-        self.problem = problem
-
-        self.train_input, self.train_ar_mask = self.problem.generate_sequences(
-            nb_train_samples
-        )
-        self.test_input, self.test_ar_mask = self.problem.generate_sequences(
-            nb_test_samples
-        )
-
-        self.train_input, self.train_ar_mask = self.train_input.to(
-            device
-        ), self.train_ar_mask.to(device)
-        self.test_input, self.test_ar_mask = self.test_input.to(
-            device
-        ), self.test_ar_mask.to(device)
-
-        self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
-
-        # A bit of paranoia never hurts
-        assert self.nb_codes <= max_nb_codes
-        assert self.train_input.min() >= 0
-        assert self.test_input.min() >= 0
-        assert tuple(x.item() for x in self.train_ar_mask.unique()) in {
-            (0,),
-            (1,),
-            (0, 1),
-        }
-        assert tuple(x.item() for x in self.test_ar_mask.unique()) in {
-            (0,),
-            (1,),
-            (0, 1),
-        }
-
-        if logger is not None:
-            for s, a in zip(self.train_input[:100], self.train_ar_mask[:100]):
-                logger(f"train_sequences {self.problem.seq2str(s)}")
-                a = "".join(["01"[x.item()] for x in a])
-                logger(f"                {a}")
-
-    def batches(self, split="train", nb_to_use=-1, desc=None):
-        assert split in {"train", "test"}
-        input = self.train_input if split == "train" else self.test_input
-        if nb_to_use > 0:
-            input = input[:nb_to_use]
-        if desc is None:
-            desc = f"epoch-{split}"
-        for batch in tqdm.tqdm(
-            input.split(self.batch_size), dynamic_ncols=True, desc=desc
-        ):
-            yield batch
-
-    def vocabulary_size(self):
-        return self.nb_codes
-
-    def produce_results(
-        self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000
-    ):
-        def compute_accuracy(input, ar_mask, logger=None):
-            input, ar_mask = input[:nmax], ar_mask[:nmax]
-            result = input.clone() * (1 - ar_mask)
-
-            masked_inplace_autoregression(
-                model,
-                self.batch_size,
-                result,
-                ar_mask,
-                deterministic_synthesis,
-                progress_bar_desc=None,
-                device=self.device,
-            )
-
-            log_ground_truth = ar_mask.min() == 0
-
-            if logger is not None:
-                for sp, st in zip(result[:10], input[:10]):
-                    logger(
-                        f"test_sequences {n_epoch} prediction   {self.problem.seq2str(sp)}"
-                    )
-                    if log_ground_truth:
-                        logger(
-                            f"               {n_epoch} ground truth {self.problem.seq2str(st)}"
-                        )
-
-            nb_total, nb_correct = self.problem.compute_nb_correct(
-                input, ar_mask, result
-            )
-
-            # nb_total = ar_mask.sum().item()
-            # nb_correct = ((result == input).long() * ar_mask).sum().item()
-
-            return nb_total, nb_correct
-
-        train_nb_total, train_nb_correct = compute_accuracy(
-            self.train_input, self.train_ar_mask
-        )
-
-        logger(
-            f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
-        )
-
-        test_nb_total, test_nb_correct = compute_accuracy(
-            self.test_input, self.test_ar_mask, logger
-        )
-
-        logger(
-            f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
-        )
-
-        logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}")
-
-        if save_attention_image is not None:
-            for k in range(10):
-                ns = torch.randint(self.test_input.size(0), (1,)).item()
-                input = self.test_input[ns : ns + 1].clone()
-
-                with torch.autograd.no_grad():
-                    t = model.training
-                    model.eval()
-                    # model.record_attention(True)
-                    model(BracketedSequence(input))
-                    model.train(t)
-                    # ram = model.retrieve_attention()
-                    # model.record_attention(False)
-
-                # tokens_output = [c for c in self.problem.seq2str(input[0])]
-                # tokens_input = ["n/a"] + tokens_output[:-1]
-                # for n_head in range(ram[0].size(1)):
-                # filename = os.path.join(
-                # result_dir, f"sandbox_attention_{k}_h{n_head}.pdf"
-                # )
-                # attention_matrices = [m[0, n_head] for m in ram]
-                # save_attention_image(
-                # filename,
-                # tokens_input,
-                # tokens_output,
-                # attention_matrices,
-                # k_top=10,
-                ##min_total_attention=0.9,
-                # token_gap=12,
-                # layer_gap=50,
-                # )
-                # logger(f"wrote {filename}")
-
-
-######################################################################
-
-import picoclvr
-
-
-class PicoCLVR(Task):
-    # Make a tensor from a list of strings
-    def tensorize(self, descr):
-        token_descr = [s.strip().split(" ") for s in descr]
-        l = max([len(s) for s in token_descr])
-        token_descr = [s + ["<nul>"] * (l - len(s)) for s in token_descr]
-        id_descr = [[self.token2id[u] for u in s] for s in token_descr]
-        return torch.tensor(id_descr, device=self.device)
-
-    # Make a list of strings from a tensor
-    def detensorize(self, x):
-        return [" ".join([self.id2token[t.item()] for t in r]) for r in x]
-
-    # trim all the tensors in the tuple z to remove as much token from
-    # left and right in the first tensor. If z is a tuple, all its
-    # elements are trimed according to the triming for the first
-    def trim(self, z, token="<nul>"):
-        n = self.token2id[token]
-        if type(z) == tuple:
-            x = z[0]
-            i = (1 - (F.pad(x, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
-            a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
-            return tuple([t[:, a:b] for t in z])
-        else:
-            i = (1 - (F.pad(z, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
-            a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
-            return z[:, a:b]
-
-    ######################
-
-    def __init__(
-        self,
-        nb_train_samples,
-        nb_test_samples,
-        batch_size,
-        height,
-        width,
-        nb_colors=5,
-        logger=None,
-        device=torch.device("cpu"),
-        pruner_train=None,
-        pruner_eval=None,
-    ):
-        super().__init__()
-
-        def generate_descr(nb, cache_suffix, pruner):
-            return picoclvr.generate(
-                nb,
-                height=self.height,
-                width=self.width,
-                nb_colors=nb_colors,
-                pruner=pruner,
-            )
-
-        self.height = height
-        self.width = width
-        self.batch_size = batch_size
-        self.device = device
-        self.pruner_train = pruner_train
-        self.pruner_eval = pruner_eval
-
-        if logger is not None:
-            logger(
-                f"generating {nb_train_samples+nb_test_samples} samples (can take some time)"
-            )
-
-        self.train_descr = generate_descr(
-            nb_train_samples, "train", pruner=self.pruner_train
-        )
-        self.test_descr = generate_descr(nb_test_samples, "test", pruner=None)
-
-        # Build the tokenizer
-        tokens = {"<nul>", "<img>"}
-        for d in [self.train_descr, self.test_descr]:
-            for s in d:
-                for t in s.strip().split(" "):
-                    tokens.add(t)
-        # make this set a sorted list to get the same tensors given
-        # the same descr
-        tokens = list(tokens)
-        tokens.sort()
-        self.token2id = dict([(t, n) for n, t in enumerate(tokens)])
-        self.id2token = dict([(n, t) for n, t in enumerate(tokens)])
-        self.t_img, self.t_nul = self.token2id["<img>"], self.token2id["<nul>"]
-
-        # Tokenize the train and test sets
-        self.train_input = self.tensorize(self.train_descr)
-        self.test_input = self.tensorize(self.test_descr)
-
-    def batches(self, split="train", nb_to_use=-1, desc=None):
-        assert split in {"train", "test"}
-        input = self.train_input if split == "train" else self.test_input
-        for batch in tqdm.tqdm(
-            input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
-        ):
-            yield self.trim(batch)
-
-    def vocabulary_size(self):
-        return len(self.token2id)
-
-    def compute_missing_properties(
-        self, n_epoch, model, logger, deterministic_synthesis, pruner=None
-    ):
-        acc_nb_requested_properties = []
-        acc_nb_missing_properties = []
-        acc_nb_results = 0
-
-        for input in tqdm.tqdm(
-            self.test_input.split(self.batch_size),
-            dynamic_ncols=True,
-            desc=f"test-properties",
-        ):
-            result = input.clone()
-            ar_mask = (result == self.t_img).long().cumsum(dim=1).clamp(max=1)
-            result = (1 - ar_mask) * result + ar_mask * self.t_nul
-            masked_inplace_autoregression(
-                model,
-                self.batch_size,
-                result,
-                ar_mask,
-                deterministic_synthesis,
-                progress_bar_desc=None,
-                device=self.device,
-            )
-
-            result_descr = self.detensorize(result)
-            np = picoclvr.nb_properties(
-                result_descr,
-                height=self.height,
-                width=self.width,
-                pruner=pruner,
-            )
-            nb_requested_properties, _, nb_missing_properties = zip(*np)
-            acc_nb_requested_properties += nb_requested_properties
-            acc_nb_missing_properties += nb_missing_properties
-            acc_nb_results += len(result_descr)
-
-        nb_requested_properties = sum(acc_nb_requested_properties)
-        nb_missing_properties = sum(acc_nb_missing_properties)
-
-        prefix = "" if pruner is None else "pruned_"
-        logger(f"nb_{prefix}samples {n_epoch} {acc_nb_results}")
-        logger(
-            f"property_{prefix}nb {n_epoch} requested {sum(acc_nb_requested_properties)} missing {sum(acc_nb_missing_properties)}"
-        )
-        logger(
-            f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
-        )
-
-        logger(
-            f"main_test_accuracy {n_epoch} {1-nb_missing_properties/nb_requested_properties}"
-        )
-
-    ######################################################################
-
-    def produce_results(
-        self, n_epoch, model, result_dir, logger, deterministic_synthesis
-    ):
-        self.compute_missing_properties(n_epoch, model, logger, deterministic_synthesis)
-
-        if self.pruner_eval is not None:
-            self.compute_missing_properties(n_epoch, model, self.pruner_eval)
-
-        nb_tokens_to_generate = self.height * self.width + 3
-        result_descr = []
-        nb_per_primer = 8
-        primer = []
-
-        for primer_descr in [
-            "red above green <sep> green top <sep> blue right of red",
-            "there is red <sep> there is yellow <sep> there is blue",
-            "red below yellow <sep> yellow below green <sep> green below blue <sep> red right <sep> yellow left <sep> green right <sep> blue left",
-            "green bottom <sep> yellow bottom <sep> green left of blue <sep> yellow right of blue <sep> blue top",
-        ]:
-            primer += [primer_descr + " <img>"] * nb_per_primer
-
-        result = self.tensorize(primer)
-        fill = result.new_full(
-            result.size()[:-1] + (self.height * self.width + 1,), self.t_nul
-        )
-        result = torch.cat((result, fill), 1)
-        ar_mask = (result == self.t_nul).long()
-        masked_inplace_autoregression(
-            model,
-            self.batch_size,
-            result,
-            ar_mask,
-            deterministic_synthesis,
-            device=self.device,
-        )
-        result_descr = self.detensorize(result)
-
-        np = picoclvr.nb_properties(result_descr, height=self.height, width=self.width)
-
-        acc_nb_requested_properties, _, acc_nb_missing_properties = zip(*np)
-        acc_nb_results = len(result_descr)
-
-        nb_requested_properties = sum(acc_nb_requested_properties)
-        nb_missing_properties = sum(acc_nb_missing_properties)
-
-        prefix = "demo_"
-        logger(f"nb_{prefix}samples {n_epoch} {acc_nb_results}")
-        logger(
-            f"property_{prefix}nb {n_epoch} requested {sum(acc_nb_requested_properties)} missing {sum(acc_nb_missing_properties)}"
-        )
-        logger(
-            f"property_{prefix}miss {n_epoch} {100*nb_missing_properties/nb_requested_properties:.02f}%"
-        )
-
-        img = picoclvr.descr2img(result_descr, height=self.height, width=self.width)
-
-        if img.dim() == 5:
-            if img.size(1) == 1:
-                img = F.pad(img.squeeze(1), pad=(1, 1, 1, 1), value=64)
-            else:
-                img = torch.cat(
-                    [
-                        torchvision.utils.make_grid(x, padding=1, pad_value=64)[None]
-                        for x in img
-                    ],
-                    0,
-                )
-
-        image_name = os.path.join(result_dir, f"picoclvr_result_{n_epoch:04d}.png")
-        torchvision.utils.save_image(
-            img / 255.0, image_name, nrow=nb_per_primer, padding=1, pad_value=0.0
-        )
-        logger(f"wrote {image_name}")
-
-
-######################################################################
-
-
-class MNIST(Task):
-    def __init__(
-        self, nb_train_samples, nb_test_samples, batch_size, device=torch.device("cpu")
-    ):
-        super().__init__()
-
-        self.nb_train_samples = (nb_train_samples,)
-        self.nb_test_samples = (nb_test_samples,)
-        self.batch_size = batch_size
-        self.device = device
-        data_set = torchvision.datasets.MNIST(root="./data", train=True, download=True)
-        self.train_input = data_set.data[:nb_train_samples].view(-1, 28 * 28).long()
-        data_set = torchvision.datasets.MNIST(root="./data", train=False, download=True)
-        self.test_input = data_set.data[:nb_test_samples].view(-1, 28 * 28).long()
-
-    def batches(self, split="train", nb_to_use=-1, desc=None):
-        assert split in {"train", "test"}
-        input = self.train_input if split == "train" else self.test_input
-        if nb_to_use > 0:
-            input = input[:nb_to_use]
-        if desc is None:
-            desc = f"epoch-{split}"
-        for batch in tqdm.tqdm(
-            input.split(self.batch_size), dynamic_ncols=True, desc=desc
-        ):
-            yield batch
-
-    def vocabulary_size(self):
-        return 256
-
-    def produce_results(
-        self, n_epoch, model, result_dir, logger, deterministic_synthesis
-    ):
-        results = torch.empty(64, 28 * 28, device=self.device, dtype=torch.int64)
-        ar_mask = torch.full_like(results, 1)
-        masked_inplace_autoregression(
-            model,
-            self.batch_size,
-            results,
-            ar_mask,
-            deterministic_synthesis,
-            device=self.device,
-        )
-        image_name = os.path.join(result_dir, f"mnist_result_{n_epoch:04d}.png")
-        torchvision.utils.save_image(
-            1 - results.reshape(-1, 1, 28, 28) / 255.0,
-            image_name,
-            nrow=16,
-            pad_value=0.8,
-        )
-        logger(f"wrote {image_name}")
-
-
-######################################################################
-
-import maze
-
-
-class Maze(Task):
-    def map2seq(self, *m):
-        return torch.cat([x.flatten(1) for x in m], 1)
-
-    def seq2map(self, s):
-        s = s.reshape(s.size(0), -1, self.height, self.width)
-        return (s[:, k] for k in range(s.size(1)))
-
-    def __init__(
-        self,
-        nb_train_samples,
-        nb_test_samples,
-        batch_size,
-        height,
-        width,
-        nb_walls,
-        device=torch.device("cpu"),
-    ):
-        super().__init__()
-
-        self.batch_size = batch_size
-        self.height = height
-        self.width = width
-        self.device = device
-
-        train_mazes, train_paths, _ = maze.create_maze_data(
-            nb_train_samples,
-            height=height,
-            width=width,
-            nb_walls=nb_walls,
-            progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
-        )
-        self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
-
-        test_mazes, test_paths, _ = maze.create_maze_data(
-            nb_test_samples,
-            height=height,
-            width=width,
-            nb_walls=nb_walls,
-            progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
-        )
-        self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
-
-        self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
-
-    def batches(self, split="train", nb_to_use=-1, desc=None):
-        assert split in {"train", "test"}
-        input = self.train_input if split == "train" else self.test_input
-        if nb_to_use > 0:
-            input = input[:nb_to_use]
-        if desc is None:
-            desc = f"epoch-{split}"
-        for batch in tqdm.tqdm(
-            input.split(self.batch_size), dynamic_ncols=True, desc=desc
-        ):
-            yield batch
-
-    def vocabulary_size(self):
-        return self.nb_codes
-
-    def compute_error(
-        self, model, split="train", nb_to_use=-1, deterministic_synthesis=False
-    ):
-        model_device = next(model.parameters()).device
-        nb_total, nb_correct = 0, 0
-        count = torch.zeros(
-            self.width * self.height,
-            self.width * self.height,
-            device=model_device,
-            dtype=torch.int64,
-        )
-
-        for input in self.batches(split, nb_to_use):
-            input = input.to(model_device)
-            result = input.clone()
-            ar_mask = result.new_zeros(result.size())
-            ar_mask[:, self.height * self.width :] = 1
-            result *= 1 - ar_mask
-            masked_inplace_autoregression(
-                model,
-                self.batch_size,
-                result,
-                ar_mask,
-                deterministic_synthesis,
-                progress_bar_desc=None,
-                device=self.device,
-            )
-            mazes, paths = self.seq2map(result)
-            path_correctness = maze.path_correctness(mazes, paths)
-            nb_correct += path_correctness.long().sum()
-            nb_total += mazes.size(0)
-
-            optimal_path_lengths = (
-                (input[:, self.height * self.width :] == maze.v_path).long().sum(1)
-            )
-            predicted_path_lengths = (
-                (result[:, self.height * self.width :] == maze.v_path).long().sum(1)
-            )
-            optimal_path_lengths = optimal_path_lengths[path_correctness]
-            predicted_path_lengths = predicted_path_lengths[path_correctness]
-            count[optimal_path_lengths, predicted_path_lengths] += 1
-
-        if count.max() == 0:
-            count = None
-        else:
-            count = count[
-                : count.sum(1).nonzero().max() + 1, : count.sum(0).nonzero().max() + 1
-            ]
-
-        return nb_total, nb_correct, count
-
-    def produce_results(
-        self, n_epoch, model, result_dir, logger, deterministic_synthesis
-    ):
-        train_nb_total, train_nb_correct, count = self.compute_error(
-            model,
-            "train",
-            nb_to_use=1000,
-            deterministic_synthesis=deterministic_synthesis,
-        )
-        logger(
-            f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
-        )
-
-        test_nb_total, test_nb_correct, count = self.compute_error(
-            model,
-            "test",
-            nb_to_use=1000,
-            deterministic_synthesis=deterministic_synthesis,
-        )
-        logger(
-            f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
-        )
-
-        logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}")
-
-        if count is not None:
-            proportion_optimal = count.diagonal().sum().float() / count.sum()
-            logger(f"proportion_optimal_test {proportion_optimal*100:.02f}%")
-            with open(
-                os.path.join(result_dir, f"maze_result_{n_epoch:04d}.txt"), "w"
-            ) as f:
-                for i in range(count.size(0)):
-                    for j in range(count.size(1)):
-                        eol = " " if j < count.size(1) - 1 else "\n"
-                        f.write(f"{count[i,j]}{eol}")
-
-        input = self.test_input[:48].to(next(model.parameters()).device)
-        result = input.clone()
-        ar_mask = result.new_zeros(result.size())
-        ar_mask[:, self.height * self.width :] = 1
-        result *= 1 - ar_mask
-        masked_inplace_autoregression(
-            model,
-            self.batch_size,
-            result,
-            ar_mask,
-            deterministic_synthesis,
-            device=self.device,
-        )
-
-        mazes, paths = self.seq2map(input)
-        _, predicted_paths = self.seq2map(result)
-
-        filename = os.path.join(result_dir, f"maze_result_{n_epoch:04d}.png")
-        maze.save_image(
-            filename,
-            mazes=mazes,
-            target_paths=paths,
-            predicted_paths=predicted_paths,
-            path_correct=maze.path_correctness(mazes, predicted_paths),
-            path_optimal=maze.path_optimality(paths, predicted_paths),
-        )
-        logger(f"wrote {filename}")
-
-
-######################################################################
-
-
-import snake
-
-
-class Snake(Task):
-    def __init__(
-        self,
-        nb_train_samples,
-        nb_test_samples,
-        batch_size,
-        height,
-        width,
-        nb_colors,
-        length,
-        prompt_length,
-        device=torch.device("cpu"),
-    ):
-        super().__init__()
-
-        self.batch_size = batch_size
-        self.height = height
-        self.width = width
-        self.device = device
-        self.prompt_length = prompt_length
-
-        self.train_input, self.train_prior_visits, _, _ = snake.generate_sequences(
-            nb_train_samples,
-            height,
-            width,
-            nb_colors,
-            length,
-            prompt_length,
-            self.device,
-        )
-        self.test_input, self.test_prior_visits, _, _ = snake.generate_sequences(
-            nb_test_samples,
-            height,
-            width,
-            nb_colors,
-            length,
-            prompt_length,
-            self.device,
-        )
-
-        self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
-
-    def batches(self, split="train", nb_to_use=-1, desc=None):
-        assert split in {"train", "test"}
-        input = self.train_input if split == "train" else self.test_input
-        if nb_to_use > 0:
-            input = input[:nb_to_use]
-        if desc is None:
-            desc = f"epoch-{split}"
-        for batch in tqdm.tqdm(
-            input.split(self.batch_size), dynamic_ncols=True, desc=desc
-        ):
-            yield batch
-
-    def vocabulary_size(self):
-        return self.nb_codes
-
-    def produce_results(
-        self, n_epoch, model, result_dir, logger, deterministic_synthesis
-    ):
-        def compute_nb_correct(input, prior_visits):
-            result = input.clone()
-            i = torch.arange(result.size(1), device=result.device)[None, :]
-            ar_mask = (
-                torch.logical_and(i >= self.prompt_length * 2, i % 2 == 0)
-                .long()
-                .expand_as(result)
-            )
-            result *= 1 - ar_mask
-
-            masked_inplace_autoregression(
-                model,
-                self.batch_size,
-                result,
-                ar_mask,
-                deterministic_synthesis,
-                device=self.device,
-            )
-
-            nb_total = ((prior_visits > 0) * ar_mask).sum()
-
-            nb_correct = ((result == input).long() * (prior_visits > 0) * ar_mask).sum()
-
-            return nb_total, nb_correct
-
-        test_nb_total, test_nb_correct = compute_nb_correct(
-            self.test_input[:1000], self.test_prior_visits[:1000]
-        )
-
-        logger(
-            f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
-        )
-
-        logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}")
-
-
-######################################################################
-
-
-import stack
-
-
-class Stack(Task):
-    def __init__(
-        self,
-        nb_train_samples,
-        nb_test_samples,
-        batch_size,
-        logger,
-        nb_steps,
-        nb_stacks,
-        nb_digits,
-        fraction_values_for_train=None,
-        device=torch.device("cpu"),
-    ):
-        super().__init__()
-
-        self.batch_size = batch_size
-        self.nb_steps = nb_steps
-        self.nb_stacks = nb_stacks
-        self.nb_digits = nb_digits
-        self.device = device
-
-        if fraction_values_for_train is None:
-            values_for_train = None
-            values_for_test = None
-        else:
-            all = torch.randperm(10**nb_digits)
-            nb_for_train = int(all.size(0) * fraction_values_for_train)
-            values_for_train = all[:nb_for_train]
-            values_for_test = all[nb_for_train:]
-
-        self.train_input, self.train_stack_counts = stack.generate_sequences(
-            nb_train_samples,
-            nb_steps,
-            nb_stacks,
-            nb_digits,
-            values_for_train,
-            self.device,
-        )
-
-        self.test_input, self.test_stack_counts = stack.generate_sequences(
-            nb_test_samples,
-            nb_steps,
-            nb_stacks,
-            nb_digits,
-            values_for_test,
-            self.device,
-        )
-
-        i = torch.logical_and(self.test_input % 2 == 1, self.test_input < 2 * nb_stacks)
-        counts = self.test_stack_counts.flatten()[i.flatten()]
-        counts = F.one_hot(counts).sum(0)
-        logger(f"test_pop_stack_counts {counts}")
-
-        self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
-
-    def batches(self, split="train", nb_to_use=-1, desc=None):
-        assert split in {"train", "test"}
-        input = self.train_input if split == "train" else self.test_input
-        if nb_to_use > 0:
-            input = input[:nb_to_use]
-        if desc is None:
-            desc = f"epoch-{split}"
-        for batch in tqdm.tqdm(
-            input.split(self.batch_size), dynamic_ncols=True, desc=desc
-        ):
-            yield batch
-
-    def vocabulary_size(self):
-        return self.nb_codes
-
-    def produce_results(
-        self, n_epoch, model, result_dir, logger, deterministic_synthesis
-    ):
-        def compute_nb_correct(input):
-            result = input.clone()
-            stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
-            ar_mask = (result != input).long()
-            masked_inplace_autoregression(
-                model,
-                self.batch_size,
-                result,
-                ar_mask,
-                deterministic_synthesis,
-                device=self.device,
-            )
-
-            errors = ((result != input).long() * ar_mask).reshape(
-                -1, 1 + self.nb_digits
-            )
-            ar_mask = ar_mask.reshape(-1, 1 + self.nb_digits)
-
-            nb_total = ar_mask.max(1).values.sum()
-            nb_correct = nb_total - errors.max(1).values.sum()
-
-            return nb_total, nb_correct
-
-        test_nb_total, test_nb_correct = compute_nb_correct(self.test_input[:1000])
-
-        logger(
-            f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
-        )
-
-        logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}")
-
-        ##############################################################
-        # Log a few generated sequences
-        input = self.test_input[:10, : 12 * (1 + self.nb_digits)]
-        result = input.clone()
-        stack.remove_popped_values(result, self.nb_stacks, self.nb_digits)
-        ar_mask = (result != input).long()
-
-        # for n in range(result.size(0)):
-        # logger(
-        # f"test_before {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
-        # )
-
-        masked_inplace_autoregression(
-            model,
-            self.batch_size,
-            result,
-            ar_mask,
-            deterministic_synthesis,
-            device=self.device,
-        )
-
-        #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-        for label, input in [
-            ("train", self.train_input[:32]),
-            ("test", self.test_input[:32]),
-        ]:
-            output = model(BracketedSequence(input)).x
-            output = output.log_softmax(dim=-1)
-            filename = os.path.join(
-                result_dir, f"stack_with_crossentropy_{n_epoch:04d}_{label}.txt"
-            )
-            with open(filename, "w") as f:
-                for n in range(input.size(0)):
-                    s = stack.seq_to_str(
-                        input[n], nb_stacks=self.nb_stacks, nb_digits=self.nb_digits
-                    )
-                    for t, k, w in zip(range(input[n].size(0)), input[n], s.split(" ")):
-                        u = (
-                            " " * (10 - len(w))
-                            + w
-                            + " "
-                            + str(output[n][t][k].exp().item())
-                            + "\n"
-                        )
-                        f.write(u)
-                    f.write("\n")
-            logger(f"wrote {filename}")
-        #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
-
-        for n in range(result.size(0)):
-            logger(
-                f"test_after  {stack.seq_to_str(result[n],nb_stacks=self.nb_stacks,nb_digits=self.nb_digits)}"
-            )
-        ##############################################################
-
-
-######################################################################
-
-import rpl
-
-
-class RPL(Task):
-    def tensorize(self, sequences):
-        len_max = max([len(x) for x in sequences])
-        return torch.cat(
-            [
-                torch.tensor(
-                    [
-                        [
-                            self.token2id[str(c)]
-                            for c in s + ["<nul>"] * (len_max - len(s))
-                        ]
-                        for s in sequences
-                    ]
-                )
-            ],
-            0,
-        )
-
-    def seq2str(self, seq):
-        return " ".join([self.id2token[i] for i in seq])
-
-    def __init__(
-        self,
-        nb_train_samples,
-        nb_test_samples,
-        batch_size,
-        nb_starting_values=3,
-        max_input=9,
-        prog_len=6,
-        nb_runs=5,
-        no_prog=False,
-        logger=None,
-        device=torch.device("cpu"),
-    ):
-        super().__init__()
-
-        self.batch_size = batch_size
-        self.device = device
-        self.no_prog = no_prog
-
-        train_sequences = [
-            rpl.generate(
-                nb_starting_values=nb_starting_values,
-                nb_result_values_max=4 * nb_starting_values,
-                max_input=max_input,
-                prog_len=prog_len,
-                nb_runs=nb_runs,
-            )
-            for _ in tqdm.tqdm(range(nb_train_samples), desc="train-data")
-        ]
-
-        test_sequences = [
-            rpl.generate(
-                nb_starting_values=nb_starting_values,
-                nb_result_values_max=4 * nb_starting_values,
-                max_input=max_input,
-                prog_len=prog_len,
-                nb_runs=nb_runs,
-            )
-            for _ in tqdm.tqdm(range(nb_test_samples), desc="test-data")
-        ]
-
-        symbols = list(
-            set(["<nul>"] + [x for l in train_sequences + test_sequences for x in l])
-        )
-        val_max = max([x if type(x) is int else 0 for x in symbols])
-        symbols = list(filter(lambda x: type(x) is str, symbols))
-        symbols.sort()
-        symbols += [str(n) for n in range(val_max + 1)]
-        self.token2id = dict([(c, n) for n, c in enumerate(symbols)])
-        self.id2token = dict([(n, c) for c, n in self.token2id.items()])
-
-        self.t_nul = self.token2id["<nul>"]
-        self.t_input = self.token2id["<in>"]
-        self.t_output = self.token2id["<out>"]
-        self.t_prog = self.token2id["<prg>"]
-        self.t_end = self.token2id["<end>"]
-
-        self.train_input = self.tensorize(train_sequences)
-        self.test_input = self.tensorize(test_sequences)
-
-        if no_prog:
-            # Excise the program from every train and test example
-            k = torch.arange(self.train_input.size(1), device=self.train_input.device)[
-                None, :
-            ]
-            p = (
-                ((self.train_input == self.t_prog).long() * k)
-                .max(1, keepdim=True)
-                .values
-            )
-            self.train_input = (
-                self.train_input * (k <= p).long()
-                + self.t_end * (k == p + 1).long()
-                + self.t_nul * (k > p + 1).long()
-            )
-            k = torch.arange(self.test_input.size(1), device=self.test_input.device)[
-                None, :
-            ]
-            p = (
-                ((self.test_input == self.t_prog).long() * k)
-                .max(1, keepdim=True)
-                .values
-            )
-            self.test_input = (
-                self.test_input * (k <= p).long()
-                + self.t_end * (k == p + 1).long()
-                + self.t_nul * (k > p + 1).long()
-            )
-
-        if logger is not None:
-            logger(f"value_max {val_max}")
-            for x in self.train_input[:25]:
-                end = (x != self.t_nul).nonzero().max().item() + 1
-                seq = [self.id2token[i.item()] for i in x[:end]]
-                s = " ".join(seq)
-                logger(f"example_seq {s}")
-
-        self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
-
-    def batches(self, split="train", nb_to_use=-1, desc=None):
-        assert split in {"train", "test"}
-        input = self.train_input if split == "train" else self.test_input
-        if nb_to_use > 0:
-            input = input[:nb_to_use]
-        if desc is None:
-            desc = f"epoch-{split}"
-        for batch in tqdm.tqdm(
-            input.split(self.batch_size), dynamic_ncols=True, desc=desc
-        ):
-            last = (batch != self.t_nul).max(0).values.nonzero().max() + 3
-            batch = batch[:, :last].to(self.device)
-            yield batch
-
-    def vocabulary_size(self):
-        return self.nb_codes
-
-    def produce_results(
-        self, n_epoch, model, result_dir, logger, deterministic_synthesis
-    ):
-        # --------------------------------------------------------------------
-        def compute_nb_errors_prog(input, nb_to_log=0):
-            result = input.clone()
-            s = (result == self.t_prog).long()
-            ar_mask = (s.cumsum(dim=1) - s).clamp(min=0, max=1)
-            result = (1 - ar_mask) * result + ar_mask * self.t_nul
-
-            masked_inplace_autoregression(
-                model,
-                self.batch_size,
-                result,
-                ar_mask,
-                deterministic_synthesis,
-                device=self.device,
-            )
-
-            sum_nb_total, sum_nb_errors = 0, 0
-            for one_input, one_result in zip(input, result):
-                seq = [self.id2token[i.item()] for i in one_result]
-                nb_total, nb_errors, prog, stacks = rpl.compute_nb_errors(seq)
-                sum_nb_total += 1
-                sum_nb_errors += 0 if nb_errors == 0 else 1
-                if nb_to_log > 0:
-                    gt_seq = [self.id2token[i.item()] for i in one_input]
-                    _, _, gt_prog, _ = rpl.compute_nb_errors(gt_seq)
-                    gt_prog = " ".join([str(x) for x in gt_prog])
-                    prog = " ".join([str(x) for x in prog])
-                    comment = "*" if nb_errors == 0 else "-"
-                    logger(f"{comment} PROG [{gt_prog}] PREDICTED [{prog}]")
-                    for start_stack, target_stack, result_stack, correct in stacks:
-                        comment = "*" if correct else "-"
-                        start_stack = " ".join([str(x) for x in start_stack])
-                        target_stack = " ".join([str(x) for x in target_stack])
-                        result_stack = " ".join([str(x) for x in result_stack])
-                        logger(
-                            f"  {comment} [{start_stack}] -> [{target_stack}] PREDICTED [{result_stack}]"
-                        )
-                    nb_to_log -= 1
-
-            return sum_nb_total, sum_nb_errors
-
-        # --------------------------------------------------------------------
-        def compute_nb_errors_output(input, nb_to_log=0):
-            result = input.clone()
-            k = torch.arange(result.size(1), device=result.device)[None, :]
-            last_output_idx = (
-                ((result == self.t_output) * k).max(dim=1, keepdim=True).values
-            )
-            first_prog_idx = (
-                ((result == self.t_prog) * k).max(dim=1, keepdim=True).values
-            )
-            ar_mask = (k > last_output_idx).long() * (k < first_prog_idx).long()
-            result = (1 - ar_mask) * result + ar_mask * self.t_nul
-
-            masked_inplace_autoregression(
-                model,
-                self.batch_size,
-                result,
-                ar_mask,
-                deterministic_synthesis,
-                device=self.device,
-            )
-
-            sum_nb_total, sum_nb_errors = 0, 0
-            for one_input, one_result, i, j in zip(
-                input, result, last_output_idx, first_prog_idx
-            ):
-                seq = [self.id2token[i.item()] for i in one_result]
-                sum_nb_total += 1
-                correct = (one_input - one_result).abs().max() == 0
-                sum_nb_errors += 0 if correct else 1
-                if nb_to_log > 0:
-                    result_stack = [
-                        self.id2token[i.item()] for i in one_result[i : j + 1]
-                    ]
-                    target_stack = [
-                        self.id2token[i.item()] for i in one_input[i : j + 1]
-                    ]
-                    comment = "*" if correct else "-"
-                    result_stack = " ".join([str(x) for x in result_stack])
-                    target_stack = " ".join([str(x) for x in target_stack])
-                    logger(
-                        f"output_test {comment} [{target_stack}] PREDICTED [{result_stack}]"
-                    )
-                    nb_to_log -= 1
-
-            return sum_nb_total, sum_nb_errors
-
-        # --------------------------------------------------------------------
-
-        if not self.no_prog:
-            test_nb_total, test_nb_errors = compute_nb_errors_prog(
-                self.test_input[:1000].to(self.device), nb_to_log=10
-            )
-
-            logger(
-                f"accuracy_prog_test {n_epoch} nb_total {test_nb_total} nb_errors {test_nb_errors} accuracy {100.0*(1-test_nb_errors/test_nb_total):.02f}%"
-            )
-
-            logger(f"main_test_accuracy {n_epoch} {1-test_nb_errors/test_nb_total}")
-
-        test_nb_total, test_nb_errors = compute_nb_errors_output(
-            self.test_input[:1000].to(self.device), nb_to_log=10
-        )
-
-        logger(
-            f"accuracy_output_test {n_epoch} nb_total {test_nb_total} nb_errors {test_nb_errors} accuracy {100.0*(1-test_nb_errors/test_nb_total):.02f}%"
-        )
-
-        if save_attention_image is None:
-            logger("no save_attention_image (is pycairo installed?)")
-        else:
-            ns = torch.randint(self.test_input.size(0), (1,)).item()
-            input = self.test_input[ns : ns + 1].clone()
-            last = (input != self.t_nul).max(0).values.nonzero().max() + 3
-            input = input[:, :last].to(self.device)
-
-            with torch.autograd.no_grad():
-                t = model.training
-                model.eval()
-                model.record_attention(True)
-                model(BracketedSequence(input))
-                model.train(t)
-                ram = model.retrieve_attention()
-                model.record_attention(False)
-
-            tokens_output = [self.id2token[i.item()] for i in input[0]]
-            tokens_input = ["n/a"] + tokens_output[:-1]
-            for n_head in range(ram[0].size(1)):
-                filename = os.path.join(
-                    result_dir, f"rpl_attention_{n_epoch}_h{n_head}.pdf"
-                )
-                attention_matrices = [m[0, n_head] for m in ram]
-                save_attention_image(
-                    filename,
-                    tokens_input,
-                    tokens_output,
-                    attention_matrices,
-                    k_top=10,
-                    # min_total_attention=0.9,
-                    token_gap=12,
-                    layer_gap=50,
-                )
-                logger(f"wrote {filename}")
-
-
-######################################################################
-
-
-import expr
-
-
-class Expr(Task):
-    def tensorize(self, sequences):
-        len_max = max([len(x) for x in sequences])
-        return torch.cat(
-            [
-                torch.tensor(
-                    [
-                        [self.char2id[c] for c in s + "#" * (len_max - len(s))]
-                        for s in sequences
-                    ]
-                )
-            ],
-            0,
-        ).to(self.device)
-
-    def __init__(
-        self,
-        nb_train_samples,
-        nb_test_samples,
-        nb_variables,
-        sequence_length,
-        operand_max,
-        result_max,
-        batch_size,
-        device=torch.device("cpu"),
-    ):
-        super().__init__()
-
-        self.batch_size = batch_size
-        self.device = device
-
-        train_sequences = expr.generate_sequences(
-            nb_train_samples,
-            nb_variables=nb_variables,
-            length=sequence_length,
-            operand_max=operand_max,
-            result_max=result_max,
-        )
-
-        test_sequences = expr.generate_sequences(
-            nb_test_samples,
-            nb_variables=nb_variables,
-            length=sequence_length,
-            operand_max=operand_max,
-            result_max=result_max,
-        )
-
-        symbols = list(set("#" + "".join(train_sequences + test_sequences)))
-        symbols.sort()
-
-        self.char2id = dict([(c, n) for n, c in enumerate(symbols)])
-        self.id2char = dict([(n, c) for c, n in self.char2id.items()])
-
-        self.filler, self.space = self.char2id["#"], self.char2id[" "]
-
-        self.train_input = self.tensorize(train_sequences)
-        self.test_input = self.tensorize(test_sequences)
-
-        self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
-
-    def batches(self, split="train", nb_to_use=-1, desc=None):
-        assert split in {"train", "test"}
-        input = self.train_input if split == "train" else self.test_input
-        if nb_to_use > 0:
-            input = input[:nb_to_use]
-        if desc is None:
-            desc = f"epoch-{split}"
-        for batch in tqdm.tqdm(
-            input.split(self.batch_size), dynamic_ncols=True, desc=desc
-        ):
-            last = (batch != self.filler).max(0).values.nonzero().max() + 3
-            batch = batch[:, :last]
-            yield batch
-
-    def vocabulary_size(self):
-        return self.nb_codes
-
-    def seq2str(self, s):
-        return "".join([self.id2char[k.item()] for k in s])
-
-    def produce_results(
-        self,
-        n_epoch,
-        model,
-        result_dir,
-        logger,
-        deterministic_synthesis,
-        input_file=None,
-    ):
-        def compute_nb_correct(input):
-            result = input.clone()
-            s = (result == self.space).long()
-            ar_mask = (s.cumsum(dim=1) - s).clamp(min=0, max=1)
-            result = (1 - ar_mask) * result + ar_mask * self.filler
-            masked_inplace_autoregression(
-                model,
-                self.batch_size,
-                result,
-                ar_mask,
-                deterministic_synthesis,
-                device=self.device,
-            )
-
-            nb_total = input.size(0)
-            nb_correct = (input == result).long().min(1).values.sum()
-
-            #######################################################################
-            # Comput predicted vs. true variable values
-
-            nb_delta = torch.zeros(5, dtype=torch.int64)
-            nb_missed = 0
-
-            values_input = expr.extract_results([self.seq2str(s) for s in input])
-            values_result = expr.extract_results([self.seq2str(s) for s in result])
-
-            filename = os.path.join(result_dir, f"expr_result_{n_epoch:04d}.txt")
-
-            with open(filename, "w") as f:
-                for i, r in zip(values_input, values_result):
-                    for n, vi in i.items():
-                        vr = r.get(n)
-                        f.write(f"{vi} {-1 if vr is None else vr}\n")
-
-                        if vr is None or vr < 0:
-                            nb_missed += 1
-                        else:
-                            d = abs(vr - vi)
-                            if d >= nb_delta.size(0):
-                                nb_missed += 1
-                            else:
-                                nb_delta[d] += 1
-
-            ######################################################################
-
-            return nb_total, nb_correct, nb_delta, nb_missed
-
-        (
-            test_nb_total,
-            test_nb_correct,
-            test_nb_delta,
-            test_nb_missed,
-        ) = compute_nb_correct(self.test_input[:10000])
-
-        logger(
-            f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
-        )
-
-        logger(f"main_test_accuracy {n_epoch} {test_nb_correct/test_nb_total}")
-
-        nb_total = test_nb_delta.sum() + test_nb_missed
-        for d in range(test_nb_delta.size(0)):
-            logger(
-                f"error_value {n_epoch} delta {d} {test_nb_delta[d]} {test_nb_delta[d]*100/nb_total:.02f}%"
-            )
-        logger(
-            f"error_value {n_epoch} missed {test_nb_missed} {test_nb_missed*100/nb_total:.02f}%"
-        )
-
-        ##############################################################
-        # Log a few generated sequences
-        if input_file is None:
-            input = self.test_input[:10]
-        else:
-            with open(input_file, "r") as f:
-                sequences = [e.strip() for e in f.readlines()]
-                sequences = [s + " " + "#" * 50 for s in sequences]
-                input = self.tensorize(sequences)
-
-        result = input.clone()
-        s = (result == self.space).long()
-        ar_mask = (s.cumsum(dim=1) - s).clamp(min=0, max=1)
-        result = (1 - ar_mask) * result + ar_mask * self.filler
-
-        for n in range(result.size(0)):
-            logger(f"test_before {self.seq2str(result[n])}")
-
-        masked_inplace_autoregression(
-            model,
-            self.batch_size,
-            result,
-            ar_mask,
-            deterministic_synthesis,
-            device=self.device,
-        )
-
-        correct = (1 - ar_mask) * self.space + ar_mask * input
-        for n in range(result.size(0)):
-            comment = "GOOD" if (result[n] - input[n]).abs().max() == 0 else ""
-            logger(f"test_after  {self.seq2str(result[n])} {comment}")
-            logger(f"truth       {self.seq2str(correct[n])}")
-        ##############################################################
-
-
-######################################################################
-
-import grid
-
-
-class Grid(Task):
-    # Make a tensor from a list of strings
-    def str2tensor(self, descr):
-        token_descr = [s.strip().split(" ") for s in descr]
-        l = max([len(s) for s in token_descr])
-        token_descr = [s + ["#"] * (l - len(s)) for s in token_descr]
-        id_descr = [[self.token2id[u] for u in s] for s in token_descr]
-        return torch.tensor(id_descr, device=self.device)
-
-    # Make a list of strings from a tensor
-    def tensor2str(self, x):
-        return [" ".join([self.id2token[t.item()] for t in r]) for r in x]
-
-    # trim all the tensors in the tuple z to remove as much token from
-    # left and right in the first tensor. If z is a tuple, all its
-    # elements are trimed according to the triming for the first
-    def trim(self, z, token="#"):
-        n = self.token2id[token]
-        if type(z) == tuple:
-            x = z[0]
-            i = (1 - (F.pad(x, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
-            a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
-            return tuple([t[:, a:b] for t in z])
-        else:
-            i = (1 - (F.pad(z, (1, 1), value=n) == n).min(0).values.long()).cumsum(0)
-            a, b = (i == 0).nonzero().max(), (i == i.max()).nonzero().min()
-            return z[:, a:b]
-
-    ######################
-
-    def __init__(
-        self,
-        nb_train_samples,
-        nb_test_samples,
-        batch_size,
-        size,
-        fraction_play=0.0,
-        logger=None,
-        device=torch.device("cpu"),
-    ):
-        super().__init__()
-
-        self.device = device
-        self.batch_size = batch_size
-        self.grid_factory = grid.GridFactory(size=size)
-        self.fraction_play = fraction_play
-
-        if logger is not None:
-            logger(
-                f"generating {nb_train_samples+nb_test_samples} samples (can take some time)"
-            )
-
-        self.train_descr = self.grid_factory.generate_samples(
-            nb=nb_train_samples,
-            fraction_play=fraction_play,
-            progress_bar=lambda r: tqdm.tqdm(r),
-        )
-
-        self.test_descr = self.grid_factory.generate_samples(
-            nb=nb_test_samples, fraction_play=0.0, progress_bar=lambda r: tqdm.tqdm(r)
-        )
-
-        if fraction_play > 0:
-            self.play_descr = self.grid_factory.generate_samples(
-                nb=25, fraction_play=1.0, progress_bar=lambda r: tqdm.tqdm(r)
-            )
-        else:
-            self.play_descr = []
-
-        # Build the tokenizer
-        tokens = set()
-        for d in [self.train_descr, self.test_descr, self.play_descr]:
-            for s in d:
-                for t in s.strip().split(" "):
-                    tokens.add(t)
-        # make this set a sorted list to get the same tensors given
-        # the same descr
-        tokens = list(tokens)
-        tokens.sort()
-        tokens = ["#"] + tokens
-        self.token2id = dict([(t, n) for n, t in enumerate(tokens)])
-        self.id2token = dict([(n, t) for n, t in enumerate(tokens)])
-        self.t_nul = self.token2id["#"]
-        self.t_true = self.token2id["true"]
-        self.t_false = self.token2id["false"]
-        # self.t_pipe = self.token2id["|"]
-
-        # Tokenize the train and test sets
-        self.train_input = self.str2tensor(self.train_descr)
-        self.test_input = self.str2tensor(self.test_descr)
-        self.play_input = (
-            None if len(self.play_descr) == 0 else self.str2tensor(self.play_descr)
-        )
-
-    def batches(self, split="train", nb_to_use=-1, desc=None):
-        assert split in {"train", "test"}
-        input = self.train_input if split == "train" else self.test_input
-        for batch in tqdm.tqdm(
-            input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
-        ):
-            yield self.trim(batch)
-
-    def vocabulary_size(self):
-        return len(self.token2id)
-
-    def produce_results(
-        self, n_epoch, model, result_dir, logger, deterministic_synthesis
-    ):
-        correct = self.test_input[:1000]
-        result = correct.clone()
-        ar_mask = torch.logical_or(result == self.t_true, result == self.t_false).long()
-        result *= 1 - ar_mask  # paraaaaanoiaaaaaaa
-
-        logger(f"----------------------------------------------------------")
-
-        for e in self.tensor2str(result[:10]):
-            logger(f"test_before {e}")
-
-        masked_inplace_autoregression(
-            model,
-            self.batch_size,
-            result,
-            ar_mask,
-            deterministic_synthesis,
-            device=self.device,
-        )
-
-        logger(f"----------------------------------------------------------")
-
-        for e in self.tensor2str(result[:10]):
-            logger(f"test_after  {e}")
-
-        logger(f"----------------------------------------------------------")
-
-        nb_total = ar_mask.sum().item()
-        nb_correct = ((correct == result).long() * ar_mask).sum().item()
-
-        logger(f"test_performance {n_epoch} {nb_total=} {nb_correct=}")
-        logger(f"main_test_accuracy {n_epoch} {nb_correct / nb_total}")
-
-        if self.play_input is not None:
-            result = self.play_input.clone()
-            ar_mask = (result == self.t_pipe).long().cumsum(dim=1).clamp(max=1)
-            result *= 1 - ar_mask  # paraaaaanoiaaaaaaa
-
-            logger(f"----------------------------------------------------------")
-
-            for e in self.tensor2str(result[:10]):
-                logger(f"play_before {e}")
-
-            masked_inplace_autoregression(
-                model,
-                self.batch_size,
-                result,
-                ar_mask,
-                deterministic_synthesis,
-                device=self.device,
-            )
-
-            logger(f"----------------------------------------------------------")
-
-            for e in self.tensor2str(result[:10]):
-                logger(f"play_after  {e}")
-
-            logger(f"----------------------------------------------------------")
-
-
-######################################################################
-
-import qmlp
-
-
-class QMLP(Task):
-    ######################
-
-    def __init__(
-        self,
-        nb_train_samples,
-        nb_test_samples,
-        batch_size,
-        result_dir,
-        logger=None,
-        device=torch.device("cpu"),
-    ):
-        super().__init__()
-
-        self.device = device
-        self.batch_size = batch_size
-        self.nb_samples_per_mlp = 256
-
-        if logger is not None:
-            logger(
-                f"generating {nb_train_samples+nb_test_samples} samples (can take some time)"
-            )
-
-        seq, q_test_set, test_error = qmlp.generate_sequence_and_test_set(
-            nb_mlps=nb_train_samples + nb_test_samples,
-            nb_samples=self.nb_samples_per_mlp,
-            device=self.device,
-            batch_size=64,
-            nb_epochs=250,
-            nb_mlps_per_batch=1024,
-        )
-
-        self.train_input = seq[:nb_train_samples]
-        self.train_q_test_set = q_test_set[:nb_train_samples]
-        self.train_ref_test_errors = test_error[:nb_train_samples]
-        self.test_input = seq[nb_train_samples:]
-        self.test_q_test_set = q_test_set[nb_train_samples:]
-        self.test_ref_test_errors = test_error[nb_train_samples:]
-
-        filename = os.path.join(result_dir, f"train_errors_ref.dat")
-        with open(filename, "w") as f:
-            for e in self.train_ref_test_errors:
-                f.write(f"{e}\n")
-
-        filename = os.path.join(result_dir, f"test_errors_ref.dat")
-        with open(filename, "w") as f:
-            for e in self.test_ref_test_errors:
-                f.write(f"{e}\n")
-
-        self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
-
-    def batches(self, split="train", nb_to_use=-1, desc=None):
-        assert split in {"train", "test"}
-        input = self.train_input if split == "train" else self.test_input
-        for batch in tqdm.tqdm(
-            input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
-        ):
-            yield batch
-
-    def vocabulary_size(self):
-        return self.nb_codes
-
-    def produce_results(
-        self, n_epoch, model, result_dir, logger, deterministic_synthesis
-    ):
-        correct = self.test_input[:1000]
-        result = correct.clone()
-        ar_mask = (
-            torch.arange(result.size(1), device=result.device)
-            > self.nb_samples_per_mlp * 3 + 1
-        ).long()[None, :]
-        ar_mask = ar_mask.expand_as(result)
-        result *= 1 - ar_mask  # paraaaaanoiaaaaaaa
-
-        masked_inplace_autoregression(
-            model,
-            self.batch_size,
-            result,
-            ar_mask,
-            deterministic_synthesis,
-            device=self.device,
-        )
-
-        q_train_set = result[:, : self.nb_samples_per_mlp * 3]
-        q_params = result[:, self.nb_samples_per_mlp * 3 + 1 :]
-        error_test = qmlp.evaluate_q_params(q_params, self.test_q_test_set)
-
-        filename = os.path.join(result_dir, f"test_errors_{n_epoch:04d}.dat")
-        with open(filename, "w") as f:
-            for e in error_test:
-                f.write(f"{e}\n")
-
-
-######################################################################
-
-import greed
-
-
-class Greed(Task):
-    def __init__(
-        self,
-        nb_train_samples,
-        nb_test_samples,
-        batch_size,
-        height,
-        width,
-        T,
-        nb_walls,
-        nb_coins,
-        logger=None,
-        device=torch.device("cpu"),
-    ):
-        super().__init__()
-
-        self.batch_size = batch_size
-        self.device = device
-
-        self.world = greed.GreedWorld(height, width, T, nb_walls, nb_coins)
-
-        states, actions, rewards = self.world.generate_episodes(
-            nb_train_samples + nb_test_samples
-        )
-        seq = self.world.episodes2seq(states, actions, rewards)
-        self.train_input = seq[:nb_train_samples].to(self.device)
-        self.test_input = seq[nb_train_samples:].to(self.device)
-
-    def wipe_lookahead_rewards(self, batch):
-        t = torch.arange(batch.size(1), device=batch.device)[None, :]
-        u = torch.randint(batch.size(1), (batch.size(0), 1), device=batch.device)
-        lr_mask = (t <= u).long() * (
-            t % self.world.it_len == self.world.index_lookahead_reward
-        ).long()
-
-        return (
-            lr_mask * self.world.lookahead_reward2code(greed.REWARD_UNKNOWN)
-            + (1 - lr_mask) * batch
-        )
-
-    def batches(self, split="train", nb_to_use=-1, desc=None):
-        assert split in {"train", "test"}
-        input = self.train_input if split == "train" else self.test_input
-        if nb_to_use > 0:
-            input = input[:nb_to_use]
-        if desc is None:
-            desc = f"epoch-{split}"
-        for batch in tqdm.tqdm(
-            input.split(self.batch_size), dynamic_ncols=True, desc=desc
-        ):
-            yield self.wipe_lookahead_rewards(batch)
-
-    def vocabulary_size(self):
-        return self.world.nb_codes
-
-    def thinking_autoregression(
-        self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000
-    ):
-        snapshots = []
-
-        def ar(result, ar_mask, logit_biases=None):
-            ar_mask = ar_mask.expand_as(result)
-            result *= 1 - ar_mask
-            masked_inplace_autoregression(
-                model,
-                self.batch_size,
-                result,
-                ar_mask,
-                deterministic_synthesis=deterministic_synthesis,
-                logit_biases=logit_biases,
-                device=self.device,
-                progress_bar_desc=None,
-            )
-            warnings.warn("keeping thinking snapshots", RuntimeWarning)
-            snapshots.append(result[:100].detach().clone())
-
-        # Generate iteration after iteration
-
-        result = self.test_input[:250].clone()
-        # Erase all the content but that of the first iteration
-        result[:, self.world.it_len :] = -1
-        # Set the lookahead_reward of the firs to UNKNOWN
-        result[:, self.world.index_lookahead_reward] = self.world.lookahead_reward2code(
-            greed.REWARD_UNKNOWN
-        )
-
-        t = torch.arange(result.size(1), device=result.device)[None, :]
-
-        for u in tqdm.tqdm(
-            range(0, result.size(1), self.world.it_len),
-            desc="thinking",
-        ):
-            # Generate the next state but keep the initial one, the
-            # lookahead_reward of previous iterations are set to
-            # UNKNOWN
-            if u > 0:
-                result[
-                    :, u + self.world.index_lookahead_reward
-                ] = self.world.lookahead_reward2code(greed.REWARD_UNKNOWN)
-                ar_mask = (t >= u + self.world.index_states).long() * (
-                    t < u + self.world.index_states + self.world.state_len
-                ).long()
-                ar(result, ar_mask)
-
-            # Generate the action and reward with lookahead_reward to +1
-            result[
-                :, u + self.world.index_lookahead_reward
-            ] = self.world.lookahead_reward2code(greed.REWARD_PLUS)
-            ar_mask = (t >= u + self.world.index_reward).long() * (
-                t <= u + self.world.index_action
-            ).long()
-            ar(result, ar_mask)
-
-            # Set the lookahead_reward to UNKNOWN for the next iterations
-            result[
-                :, u + self.world.index_lookahead_reward
-            ] = self.world.lookahead_reward2code(greed.REWARD_UNKNOWN)
-
-        filename = os.path.join(result_dir, f"test_thinking_compute_{n_epoch:04d}.txt")
-        with open(filename, "w") as f:
-            for n in range(snapshots[0].size(0)):
-                for s in snapshots:
-                    lr, s, a, r = self.world.seq2episodes(
-                        s[n : n + 1],
-                    )
-                    str = self.world.episodes2str(
-                        lr, s, a, r, unicode=True, ansi_colors=True
-                    )
-                    f.write(str)
-                f.write("\n\n")
-
-        # Saving the generated sequences
-
-        lr, s, a, r = self.world.seq2episodes(result)
-        str = self.world.episodes2str(lr, s, a, r, unicode=True, ansi_colors=True)
-
-        filename = os.path.join(result_dir, f"test_thinking_seq_{n_epoch:04d}.txt")
-        with open(filename, "w") as f:
-            f.write(str)
-            logger(f"wrote {filename}")
-
-    def produce_results(
-        self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000
-    ):
-        result = self.wipe_lookahead_rewards(self.test_input[:250].clone())
-
-        # Saving the ground truth
-
-        lr, s, a, r = self.world.seq2episodes(
-            result,
-        )
-        str = self.world.episodes2str(lr, s, a, r, unicode=True, ansi_colors=True)
-
-        filename = os.path.join(result_dir, f"test_true_seq_{n_epoch:04d}.txt")
-        with open(filename, "w") as f:
-            f.write(str)
-            logger(f"wrote {filename}")
-
-        # Re-generating from the first frame
-
-        ar_mask = (
-            torch.arange(result.size(1), device=result.device) >= self.world.it_len
-        ).long()[None, :]
-        ar_mask = ar_mask.expand_as(result)
-        result *= 1 - ar_mask  # paraaaaanoiaaaaaaa
-
-        masked_inplace_autoregression(
-            model,
-            self.batch_size,
-            result,
-            ar_mask,
-            deterministic_synthesis,
-            device=self.device,
-        )
-
-        # Saving the generated sequences
-
-        lr, s, a, r = self.world.seq2episodes(
-            result,
-        )
-        str = self.world.episodes2str(lr, s, a, r, unicode=True, ansi_colors=True)
-
-        filename = os.path.join(result_dir, f"test_seq_{n_epoch:04d}.txt")
-        with open(filename, "w") as f:
-            f.write(str)
-            logger(f"wrote {filename}")
-
-        self.thinking_autoregression(
-            n_epoch, model, result_dir, logger, deterministic_synthesis, nmax
-        )
-
-
-######################################################################
 ######################################################################
 
 import world
@@ -2105,6 +87,10 @@ class World(Task):
         torchvision.utils.save_image(img.float() / 255.0, image_name, nrow=8, padding=2)
         logger(f"wrote {image_name}")
 
+    def make_ar_mask(self, input):
+        b = torch.arange(input.size(1), device=input.device) > input.size(1) // 2
+        return b.long()[None, :].expand_as(input)
+
     def __init__(
         self,
         nb_train_samples,
@@ -2123,41 +109,48 @@ class World(Task):
 
         self.train_input = world.generate(
             nb_train_samples, height=self.height, width=self.width
-        )
-        self.train_ar_mask = (
-            (torch.arange(self.train_input.size(1)) > self.train_input.size(1) // 2)
-            .long()[None, :]
-            .expand_as(self.train_input)
-        )
+        ).to(device)
 
         self.test_input = world.generate(
             nb_test_samples, height=self.height, width=self.width
-        )
-        self.test_ar_mask = (
-            (torch.arange(self.test_input.size(1)) > self.test_input.size(1) // 2)
-            .long()[None, :]
-            .expand_as(self.test_input)
-        )
-
-        self.train_input, self.train_ar_mask = self.train_input.to(
-            device
-        ), self.train_ar_mask.to(device)
-        self.test_input, self.test_ar_mask = self.test_input.to(
-            device
-        ), self.test_ar_mask.to(device)
+        ).to(device)
 
         self.nb_codes = max(self.train_input.max(), self.test_input.max()) + 1
 
+        self.train_quizzes = []
+        self.test_quizzes = []
+
         if result_dir is not None:
             self.save_image(
                 self.train_input[:96], result_dir, f"world_train.png", logger
             )
 
-    def batches(self, split="train", nb_to_use=-1, desc=None):
+    def batches(self, split="train", desc=None):
         assert split in {"train", "test"}
-        input = self.train_input if split == "train" else self.test_input
-        if nb_to_use > 0:
-            input = input[:nb_to_use]
+        if split == "train":
+            input = self.train_input
+            quizzes = self.train_quizzes
+        else:
+            input = self.test_input
+            quizzes = self.test_quizzes
+
+        if len(quizzes) > 0:
+            quizzes = torch.cat(quizzes, dim=0)
+            if quizzes.size(0) > input.size(0) // 2:
+                i = torch.randperm(input.size(0))[: input.size(0) // 2]
+                quizzes = quizzes[i]
+
+            i = torch.randperm(input.size(0))[: input.size(0) - quizzes.size(0)]
+            input = input[i]
+
+            self.nb_batch_samples_world = input.size(0)
+            self.nb_batch_samples_quizzes = quizzes.size(0)
+
+            input = torch.cat([input, quizzes], dim=0)
+        else:
+            self.nb_batch_samples_world = input.size(0)
+            self.nb_batch_samples_quizzes = 0
+
         if desc is None:
             desc = f"epoch-{split}"
         for batch in tqdm.tqdm(
@@ -2171,8 +164,9 @@ class World(Task):
     def produce_results(
         self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000
     ):
-        def compute_accuracy(input, ar_mask, logger=None):
-            input, ar_mask = input[:nmax], ar_mask[:nmax]
+        def compute_accuracy(input, logger=None):
+            input = input[:nmax]
+            ar_mask = self.make_ar_mask(input)
             result = input.clone() * (1 - ar_mask)
 
             masked_inplace_autoregression(
@@ -2192,17 +186,13 @@ class World(Task):
 
             return nb_total, nb_correct
 
-        train_nb_total, train_nb_correct = compute_accuracy(
-            self.train_input, self.train_ar_mask
-        )
+        train_nb_total, train_nb_correct = compute_accuracy(self.train_input)
 
         logger(
             f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
         )
 
-        test_nb_total, test_nb_correct = compute_accuracy(
-            self.test_input, self.test_ar_mask, logger
-        )
+        test_nb_total, test_nb_correct = compute_accuracy(self.test_input, logger)
 
         logger(
             f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
@@ -2213,7 +203,8 @@ class World(Task):
 
         ##############################
 
-        input, ar_mask = self.test_input[:96], self.test_ar_mask[:96]
+        input = self.test_input[:96]
+        ar_mask = self.make_ar_mask(input)
         result = input.clone() * (1 - ar_mask)
 
         masked_inplace_autoregression(
@@ -2227,25 +218,28 @@ class World(Task):
         )
 
         self.save_image(
-            result[:96], result_dir, f"world_result_{n_epoch:04d}.png", logger
+            result[:96],
+            result_dir,
+            f"world_prediction_{n_epoch:04d}_{model.id:02d}.png",
+            logger,
         )
 
         return main_test_accuracy
 
     def store_new_quizzes(self, new_quizzes, for_train=True):
-        input = self.train_input if for_train else self.test_input
-
-        nb_current = input.size(0)
-        nb_new = new_quizzes.size(0)
-        if nb_new >= nb_current:
-            input[...] = new_quizzes[:nb_current]
+        if for_train:
+            self.train_quizzes.append(new_quizzes)
         else:
-            nb_kept = nb_current - nb_new
-            input[:nb_kept] = input[-nb_kept:].clone()
-            input[nb_kept:] = new_quizzes
+            self.test_quizzes.append(new_quizzes)
 
     def create_new_quizzes(
-        self, n_epoch, result_dir, logger, nb, models, other_models, nb_runs
+        self,
+        n_epoch,
+        result_dir,
+        logger,
+        nb,
+        model,
+        other_models,
     ):
         new_quizzes = torch.empty(
             nb, self.height * self.width * 2 + 1, device=self.device, dtype=torch.int64
@@ -2262,35 +256,46 @@ class World(Task):
             device=self.device,
         )
 
-        input = (
-            new_quizzes[:, None, :]
-            .expand(-1, nb_runs, -1)
-            .clone()
-            .reshape(-1, new_quizzes.size(-1))
-        )
-        result = input.clone()
+        ar_mask = self.make_ar_mask(new_quizzes)
 
-        ar_mask = (
-            (torch.arange(result.size(1), device=self.device) > result.size(1) // 2)
-            .long()[None, :]
-            .expand_as(result)
-        )
+        nb_correct = 0
 
-        dispatch = torch.randint(len(other_models), (result.size(0),))
+        for m in other_models:
+            result = new_quizzes.clone()
 
-        for n, m in enumerate(other_models):
             masked_inplace_autoregression(
                 m,
                 self.batch_size,
-                result[dispatch == n],
-                ar_mask[dispatch == n],
-                deterministic_synthesis=False,
-                progress_bar_desc=None,
+                result,
+                ar_mask,
+                deterministic_synthesis=True,
+                progress_bar_desc="solving quizzes",
                 device=self.device,
             )
 
-        nb_correct = (
-            (input == result).long().min(dim=-1).values.reshape(-1, nb_runs).sum(dim=-1)
-        )
+            l = self.height * self.width
+            direction = new_quizzes[:, l : l + 1]
+            direction = world.token_forward * (
+                direction == world.token_backward
+            ) + world.token_backward * (direction == world.token_forward)
+            inverted_quizzes = torch.cat(
+                [new_quizzes[:, l + 1 :], direction, new_quizzes[:, :l]], dim=1
+            )
+
+            inverted_result = inverted_quizzes.clone()
+
+            masked_inplace_autoregression(
+                m,
+                self.batch_size,
+                inverted_result,
+                ar_mask,
+                deterministic_synthesis=True,
+                progress_bar_desc="solving reverse quizzes",
+                device=self.device,
+            )
+
+            nb_correct += (new_quizzes == result).long().min(dim=-1).values * (
+                inverted_quizzes == inverted_result
+            ).long().min(dim=-1).values
 
         return new_quizzes, nb_correct