Update.
[culture.git] / quizz_machine.py
index a3da365..92b5799 100755 (executable)
@@ -12,10 +12,48 @@ import torch, torchvision
 from torch import nn
 from torch.nn import functional as F
 
+import mygpt
 from mygpt import BracketedSequence
 
 ######################################################################
 
+# ar_mask is a tensor with 0s and 1s, of same shape as input, with
+# 1s where tokens should be generated. The others are kept
+# unchanged.
+
+
+def one_batch_masked_inplace_autoregression(
+    model,
+    input,
+    ar_mask,
+    seq_logproba,
+    temperature=1.0,
+    deterministic_synthesis=False,
+):
+    to_generate = (ar_mask.sum(0) > 0).nonzero()
+
+    if to_generate.min() > 0:
+        model(
+            BracketedSequence(input, 0, to_generate.min())
+        )  # Needed to initialize the model's cache
+    for s in range(to_generate.min(), to_generate.max() + 1):
+        output = model(BracketedSequence(input, s, 1)).x
+
+        logits = output[:, s]
+
+        logits = (logits / temperature).log_softmax(dim=-1)
+
+        if deterministic_synthesis:
+            t_next = logits.argmax(-1)
+        else:
+            dist = torch.distributions.categorical.Categorical(logits=logits)
+            t_next = dist.sample()
+
+        all_n = torch.arange(t_next.size(0))
+        seq_logproba += logits[all_n, t_next].sum(dim=-1)
+
+        input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
+
 
 def masked_inplace_autoregression(
     model,
@@ -27,7 +65,7 @@ def masked_inplace_autoregression(
     deterministic_synthesis,
     forbidden_tokens=None,
     logit_biases=None,
-    progress_bar_desc="autoregression",
+    progress_bar_desc=None,
     device=torch.device("cpu"),
 ):
     assert input.size() == ar_mask.size()
@@ -51,14 +89,13 @@ def masked_inplace_autoregression(
         model.eval()
 
         for input, ar_mask, seq_logproba in batches:
-            model.masked_inplace_autoregression(
+            one_batch_masked_inplace_autoregression(
+                model=model,
                 input=input,
                 ar_mask=ar_mask,
                 seq_logproba=seq_logproba,
                 temperature=temperature,
                 deterministic_synthesis=deterministic_synthesis,
-                forbidden_tokens=forbidden_tokens,
-                forced_biases=logit_biases,
             )
 
         model.train(t)
@@ -66,51 +103,183 @@ def masked_inplace_autoregression(
 
 ######################################################################
 
-import sky
-
 
 class QuizzMachine:
-    def save_image(self, input, result_dir, filename, logger):
-        img = self.sky.seq2img(input.to("cpu"))
-        image_name = os.path.join(result_dir, filename)
-        torchvision.utils.save_image(img.float() / 255.0, image_name, nrow=6, padding=4)
-        logger(f"wrote {image_name}")
+    def indices_forward_and_backward(self, quizzes):
+        i_forward = quizzes[:, 0] == self.token_forward
+        j_forward = quizzes[:, 1 + self.prompt_len] == self.token_forward
+        i_backward = quizzes[:, 0] == self.token_backward
+        j_backward = quizzes[:, 1 + self.answer_len] == self.token_backward
+        assert torch.logical_or(
+            torch.logical_and(i_forward, j_forward),
+            torch.logical_and(i_backward, j_backward),
+        ).all()
+        return i_forward, i_backward
+
+    def reverse_time(self, quizzes):
+        i_forward, i_backward = self.indices_forward_and_backward(quizzes)
+
+        forward_to_backward = torch.cat(
+            [
+                quizzes[:, 0:1],
+                quizzes[:, 2 + self.prompt_len : 2 + self.prompt_len + self.answer_len],
+                quizzes[:, 1 + self.prompt_len : 1 + self.prompt_len + 1],
+                quizzes[:, 1 : 1 + self.prompt_len],
+            ],
+            dim=1,
+        )
+
+        forward_to_backward[:, 0] = self.token_backward
+        forward_to_backward[:, 1 + self.answer_len] = self.token_backward
+
+        backward_to_forward = torch.cat(
+            [
+                quizzes[:, 0:1],
+                quizzes[:, 2 + self.answer_len :],
+                quizzes[:, 1 + self.answer_len : 2 + self.answer_len],
+                quizzes[:, 1 : 1 + self.answer_len],
+            ],
+            dim=1,
+        )
+
+        backward_to_forward[:, 0] = self.token_forward
+        backward_to_forward[:, 1 + self.prompt_len] = self.token_forward
+
+        m = i_forward.long()[:, None]
+
+        return m * forward_to_backward + (1 - m) * backward_to_forward
+
+    def make_ar_mask(self, quizzes, first=False):
+        i_forward, i_backward = self.indices_forward_and_backward(quizzes)
+
+        t = torch.arange(quizzes.size(1), device=quizzes.device)
+
+        if first:
+            m_forward = (t >= 1).long() * (t < 1 + self.prompt_len).long()
+            m_backward = (t >= 1).long() * (t < 1 + self.answer_len).long()
+        else:
+            m_forward = (t >= 2 + self.prompt_len).long()
+            m_backward = (t >= 2 + self.answer_len).long()
+
+        m = i_forward.long()[:, None]
+
+        return m * m_forward + (1 - m) * m_backward
 
-    def save_quizzes(self, input, result_dir, filename_prefix, logger):
-        self.save_image(input, result_dir, filename_prefix + ".png", logger)
+    def generate_token_sequences(self, nb):
+        prompts, answers = self.problem.generate_prompts_and_answers(nb)
 
-    def make_ar_mask(self, input):
-        b = torch.arange(input.size(1), device=input.device) > input.size(1) // 2
-        return b.long()[None, :].expand_as(input)
+        if self.prompt_len is None:
+            self.prompt_len = prompts.size(1)
+
+        if self.answer_len is None:
+            self.answer_len = answers.size(1)
+
+        assert prompts.size(1) == self.prompt_len and answers.size(1) == self.answer_len
+
+        result = []
+
+        for prompt, answer in zip(prompts, answers):
+            if torch.rand(1) < 0.5:
+                a = [
+                    torch.tensor([self.token_forward]),
+                    prompt,
+                    torch.tensor([self.token_forward]),
+                    answer,
+                ]
+            else:
+                a = [
+                    torch.tensor([self.token_backward]),
+                    answer,
+                    torch.tensor([self.token_backward]),
+                    prompt,
+                ]
+
+            result.append(torch.cat(a, dim=0)[None, :])
+
+        return torch.cat(result, dim=0)
 
     def __init__(
         self,
+        problem,
         nb_train_samples,
         nb_test_samples,
+        back_accuracy,
         batch_size,
-        result_dir=None,
-        logger=None,
+        result_dir,
+        logger,
         device=torch.device("cpu"),
     ):
         super().__init__()
 
-        self.sky = sky.Sky(height=6, width=8, nb_birds=3, nb_iterations=2)
+        v = problem.nb_token_values()
+        self.token_forward = v
+        self.token_backward = v + 1
+        self.nb_token_values = v + 2
+
+        self.problem = problem
+        self.back_accuracy = back_accuracy
         self.batch_size = batch_size
         self.device = device
+        self.logger = logger
+        self.prompt_len = None
+        self.answer_len = None
 
-        self.train_w_quizzes = self.sky.generate_seq(nb_train_samples).to(device)
-        self.test_w_quizzes = self.sky.generate_seq(nb_test_samples).to(device)
+        self.train_w_quizzes = self.generate_token_sequences(nb_train_samples).to(
+            device
+        )
 
-        self.nb_codes = max(self.train_w_quizzes.max(), self.test_w_quizzes.max()) + 1
+        self.test_w_quizzes = self.generate_token_sequences(nb_test_samples).to(device)
 
         self.train_c_quizzes = []
         self.test_c_quizzes = []
 
         if result_dir is not None:
             self.save_quizzes(
-                self.train_w_quizzes[:72], result_dir, f"culture_w_quizzes", logger
+                result_dir,
+                "culture_w_quizzes",
+                self.train_w_quizzes[:72],
+                n_backward=self.train_w_quizzes[:72, 0] == self.token_backward,
             )
 
+    def save_quizzes(
+        self,
+        result_dir,
+        filename_prefix,
+        quizzes,
+        n_backward=None,
+        mistakes=None,
+    ):
+        quizzes = quizzes.clone()
+        forward = quizzes[quizzes[:, 0] == self.token_forward]
+        ib = quizzes[:, 0] == self.token_backward
+        backward = quizzes[ib]
+        assert forward.size(0) + backward.size(0) == quizzes.size(0)
+        quizzes[ib] = self.reverse_time(quizzes[ib])
+
+        if n_backward is None:
+            predicted_prompts = None
+            predicted_answers = None
+        else:
+            predicted_prompts = n_backward.long()
+            predicted_answers = 1 - predicted_prompts
+            if mistakes is not None:
+                # 0/-1/+1 ~ not-to-predict / predicted wrong / predicted correct
+                predicted_prompts *= mistakes
+                predicted_answers *= mistakes
+            else:
+                # 0/2 ~ not-to-predict / to predict
+                predicted_prompts *= 2
+                predicted_answers *= 2
+
+        self.problem.save_quizzes(
+            result_dir,
+            filename_prefix,
+            quizzes[:, 1 : 1 + self.prompt_len],
+            quizzes[:, 2 + self.prompt_len :],
+            predicted_prompts,
+            predicted_answers,
+        )
+
     def batches(self, split="train", desc=None):
         assert split in {"train", "test"}
         if split == "train":
@@ -123,7 +292,7 @@ class QuizzMachine:
         if len(c_quizzes) > 0:
             c_quizzes = torch.cat(c_quizzes, dim=0)
             if c_quizzes.size(0) > w_quizzes.size(0) // 2:
-                i = torch.randperm(w_quizzes.size(0))[: w_quizzes.size(0) // 2]
+                i = torch.randperm(c_quizzes.size(0))[: w_quizzes.size(0) // 2]
                 c_quizzes = c_quizzes[i]
 
             i = torch.randperm(w_quizzes.size(0))[
@@ -151,13 +320,12 @@ class QuizzMachine:
             yield batch
 
     def vocabulary_size(self):
-        return self.nb_codes
+        return self.nb_token_values
 
     def produce_results(
-        self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000
+        self, n_epoch, model, result_dir, deterministic_synthesis, nmax=1000
     ):
-        def compute_accuracy(input, logger=None):
-            input = input[:nmax]
+        def compute_accuracy(input, log_prefix=None):
             ar_mask = self.make_ar_mask(input)
             result = input.clone() * (1 - ar_mask)
             seq_logproba = torch.empty(input.size(0), device=self.device)
@@ -174,52 +342,56 @@ class QuizzMachine:
                 device=self.device,
             )
 
-            nb_total, nb_correct = (
-                input.size(0),
-                (input == result).long().min(dim=1).values.sum(),
-            )
+            correct = torch.empty(input.size(0), dtype=torch.int64, device=input.device)
 
-            return nb_total, nb_correct
+            n_forward = input[:, 0] == self.token_forward
+            n_backward = input[:, 0] == self.token_backward
 
-        train_nb_total, train_nb_correct = compute_accuracy(self.train_w_quizzes)
+            correct[n_forward] = (
+                (input[n_forward] == result[n_forward]).long().min(dim=1).values
+            )
 
-        logger(
-            f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
-        )
+            if self.back_accuracy and n_backward.any():
+                # accuracy of B->A*->B*=B instead of B->A*=A
+                back_input = self.reverse_time(result[n_backward])
+                back_input[:, 2 + self.prompt_len :] = input[
+                    n_backward, 1 : 1 + self.answer_len
+                ]
+                result[n_backward], correct[n_backward] = compute_accuracy(back_input)
 
-        test_nb_total, test_nb_correct = compute_accuracy(self.test_w_quizzes, logger)
+            if log_prefix is not None:
+                forward_nb_correct = correct[n_forward].sum()
+                forward_nb_total = correct[n_forward].size(0)
+                backward_nb_correct = correct[n_backward].sum()
+                backward_nb_total = correct[n_backward].size(0)
 
-        logger(
-            f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
-        )
+                self.logger(
+                    f"forward_accuracy {log_prefix} {n_epoch} {model.id=} {forward_nb_correct} / {forward_nb_total}"
+                )
 
-        main_test_accuracy = test_nb_correct / test_nb_total
-        logger(f"main_test_accuracy {n_epoch} {main_test_accuracy}")
+                self.logger(
+                    f"backward_accuracy {log_prefix} {n_epoch} {model.id=} {backward_nb_correct} / {backward_nb_total}"
+                )
 
-        ##############################
+            return result, correct
 
-        input = self.test_w_quizzes[:96]
-        ar_mask = self.make_ar_mask(input)
-        result = input.clone() * (1 - ar_mask)
-        seq_logproba = torch.empty(input.size(0), device=self.device)
+        compute_accuracy(self.train_w_quizzes[:nmax], log_prefix="train")
 
-        masked_inplace_autoregression(
-            model=model,
-            batch_size=self.batch_size,
-            input=result,
-            ar_mask=ar_mask,
-            seq_logproba=seq_logproba,
-            temperature=1.0,
-            deterministic_synthesis=deterministic_synthesis,
-            progress_bar_desc=None,
-            device=self.device,
+        test_result, test_correct = compute_accuracy(
+            self.test_w_quizzes[:nmax], log_prefix="test"
         )
 
+        main_test_accuracy = test_correct.sum() / test_correct.size(0)
+        self.logger(f"main_test_accuracy {n_epoch} {main_test_accuracy}")
+
+        ##############################
+
         self.save_quizzes(
-            result[:72],
             result_dir,
             f"culture_prediction_{n_epoch:04d}_{model.id:02d}",
-            logger,
+            quizzes=test_result[:72],
+            n_backward=self.test_w_quizzes[:72, 0] == self.token_backward,
+            mistakes=test_correct[:72] * 2 - 1,
         )
 
         return main_test_accuracy
@@ -228,7 +400,7 @@ class QuizzMachine:
         input = self.train_w_quizzes if for_train else self.test_w_quizzes
         nb = min(nb, input.size(0))
         input[:-nb] = input[nb:].clone()
-        input[-nb:] = self.sky.generate_seq(nb).to(self.device)
+        input[-nb:] = self.generate_token_sequences(nb).to(self.device)
 
     def store_c_quizzes(self, new_c_quizzes, for_train=True):
         if for_train:
@@ -236,123 +408,126 @@ class QuizzMachine:
         else:
             self.test_c_quizzes.append(new_c_quizzes)
 
-    def create_c_quizzes(
+    def compute_correctness(
         self,
-        n_epoch,
-        result_dir,
-        logger,
-        nb,
-        model,
-        other_models,
-        min_ave_seq_logproba,
+        c_quizzes,
+        models_for_validation,
+        bidirectional_validation=False,
+        deterministic_validation=True,
     ):
-        ###############################################################
-        # Generate quizzes with model
+        if bidirectional_validation:
+            backward_c_quizzes = self.forward_to_backward(c_quizzes)
 
-        c_quizzes = torch.empty(
-            nb, self.train_w_quizzes.size(1), device=self.device, dtype=torch.int64
+        seq_logproba = torch.zeros(
+            c_quizzes.size(0),
+            max([m.id for m in models_for_validation]) + 1,
+            device=self.device,
         )
 
-        ar_mask = torch.full(c_quizzes.size(), 1, device=self.device)
-        seq_logproba = torch.empty(ar_mask.size(0), device=self.device)
+        nb_correct = 0
+
+        for model in models_for_validation:
+            result = c_quizzes.clone()
 
-        temperature = 1
-        d_temperature = 1 / 3
+            seq_logproba[...] = 0.0
 
-        while True:
-            seq_logproba[...] = 0
+            ar_mask = self.make_ar_mask(result)
 
             masked_inplace_autoregression(
                 model=model,
                 batch_size=self.batch_size,
-                input=c_quizzes,
+                input=result,
                 ar_mask=ar_mask,
-                seq_logproba=seq_logproba,
-                temperature=temperature,
-                deterministic_synthesis=False,
-                progress_bar_desc="sampling c_quizzes",
+                seq_logproba=seq_logproba[:, model.id],
+                temperature=1.0,
+                deterministic_synthesis=deterministic_validation,
+                # progress_bar_desc="solving c_quizzes",
                 device=self.device,
             )
 
-            ave_seq_logproba = seq_logproba.mean()
+            correct = (c_quizzes == result).long().min(dim=-1).values
 
-            logger(f"{ave_seq_logproba=} {min_ave_seq_logproba=}")
+            if bidirectional_validation:
+                backward_result = backward_c_quizzes.clone()
 
-            if min_ave_seq_logproba is None:
-                break
+                ar_mask = self.make_ar_mask(backward_result)
 
-            # Oh man that's ugly
-            if ave_seq_logproba < min_ave_seq_logproba * 1.1:
-                if d_temperature > 0:
-                    d_temperature *= -1 / 3
-                temperature += d_temperature
-            elif ave_seq_logproba > min_ave_seq_logproba:
-                if d_temperature < 0:
-                    d_temperature *= -1 / 3
-                temperature += d_temperature
-            else:
-                break
+                masked_inplace_autoregression(
+                    model=model,
+                    batch_size=self.batch_size,
+                    input=backward_result,
+                    ar_mask=ar_mask,
+                    seq_logproba=seq_logproba[:, model.id],
+                    temperature=1.0,
+                    deterministic_synthesis=deterministic_validation,
+                    # progress_bar_desc="solving backward c_quizzes",
+                    device=self.device,
+                )
 
-            logger(f"chaging temperature to {temperature}")
+                backward_correct = (
+                    (backward_c_quizzes == backward_result).long().min(dim=-1).values
+                )
 
-        ###############################################################
-        # Create the reverse quizzes
+                correct *= backward_correct
 
-        l = (c_quizzes.size(1) - 1) // 2
-        direction = c_quizzes[:, l : l + 1]
-        direction = self.sky.token_forward * (
-            direction == self.sky.token_backward
-        ) + self.sky.token_backward * (direction == self.sky.token_forward)
-        reverse_c_quizzes = torch.cat(
-            [c_quizzes[:, l + 1 :], direction, c_quizzes[:, :l]], dim=1
-        )
+            # endif
 
-        ar_mask = self.make_ar_mask(c_quizzes)
-        seq_logproba = torch.empty(ar_mask.size(0), device=self.device)
+            nb_correct += correct
 
-        ###############################################################
-        # Check how many of the other models can solve them in both
-        # directions
+        return nb_correct, seq_logproba
 
-        nb_correct = []
+    ###############################################################
 
-        for m in other_models:
-            result = c_quizzes.clone()
+    def generate_quizzes(self, nb, model_for_generation, temperature=1.0):
+        c_quizzes = torch.empty(
+            nb, self.train_w_quizzes.size(1), device=self.device, dtype=torch.int64
+        )
 
-            masked_inplace_autoregression(
-                model=m,
-                batch_size=self.batch_size,
-                input=result,
-                ar_mask=ar_mask,
-                seq_logproba=seq_logproba,
-                temperature=1.0,
-                deterministic_synthesis=True,
-                progress_bar_desc="solving c_quizzes",
-                device=self.device,
-            )
+        seq_logproba = torch.zeros(nb, device=self.device)
 
-            correct = (c_quizzes == result).long().min(dim=-1).values
+        # First, we generate the answer at high temperature
 
-            reverse_result = reverse_c_quizzes.clone()
+        c_quizzes[:, 0] = self.token_backward
+        c_quizzes[:, 1 + self.answer_len] = self.token_backward
 
-            masked_inplace_autoregression(
-                model=m,
-                batch_size=self.batch_size,
-                input=reverse_result,
-                ar_mask=ar_mask,
-                seq_logproba=seq_logproba,
-                temperature=1.0,
-                deterministic_synthesis=True,
-                progress_bar_desc="solving reversed c_quizzes",
-                device=self.device,
-            )
+        masked_inplace_autoregression(
+            model=model_for_generation,
+            batch_size=self.batch_size,
+            input=c_quizzes,
+            ar_mask=self.make_ar_mask(c_quizzes, first=True),
+            seq_logproba=seq_logproba,
+            temperature=temperature,
+            deterministic_synthesis=False,
+            device=self.device,
+        )
 
-            reverse_correct = (
-                (reverse_c_quizzes == reverse_result).long().min(dim=-1).values
-            )
+        # Then, we generate the prompt at low temperature
+
+        masked_inplace_autoregression(
+            model=model_for_generation,
+            batch_size=self.batch_size,
+            input=c_quizzes,
+            ar_mask=self.make_ar_mask(c_quizzes),
+            seq_logproba=seq_logproba,
+            temperature=1 / temperature,
+            deterministic_synthesis=False,
+            device=self.device,
+        )
+
+        # Then we return the quizz, and re-generate the response, now
+        # at low temperature
 
-            nb_correct.append((correct * reverse_correct)[None, :])
+        c_quizzes = self.reverse_time(c_quizzes)
 
-        nb_correct = torch.cat(nb_correct, dim=0).sum(dim=0)
+        masked_inplace_autoregression(
+            model=model_for_generation,
+            batch_size=self.batch_size,
+            input=c_quizzes,
+            ar_mask=self.make_ar_mask(c_quizzes),
+            seq_logproba=seq_logproba,
+            temperature=1 / temperature,
+            deterministic_synthesis=False,
+            device=self.device,
+        )
 
-        return c_quizzes, nb_correct, seq_logproba.mean()
+        return c_quizzes