+++ /dev/null
-#!/usr/bin/env python
-
-# Any copyright is dedicated to the Public Domain.
-# https://creativecommons.org/publicdomain/zero/1.0/
-
-# Written by Francois Fleuret <francois@fleuret.org>
-
-# This is an implementation from scratch of a "GPT", that is a model
-# composed of several causal self-attention blocks. It is equipped
-# with a caching mechanism for keys and values to avoid a O(N^3) cost
-# for auto-regression.
-
-import math
-
-import torch
-
-from torch import nn
-from torch.nn import functional as F
-
-######################################################################
-
-# A BracketedSequence is a BxTx... tensor with a first and a nb time
-# steps to compute.
-
-# Modules able to process it expect that they will have to process a
-# first bracket starting at t=0, followed by a succession of brackets
-# that move forward in time, do not overlap, and cover the axis T with
-# no holes.
-#
-# Although it is more general, for a classical prompt-conditioned
-# auto-regressive process it will be a first bracket starting at 0 and
-# of arbitrary length for the "prompt", followed by brackets of length
-# 1 for the successive tokens.
-#
-# Modules able to process brackets may implement a cache that is
-# resetted when the input bracket starts at t=0
-
-
-class BracketedSequence:
- def __init__(self, x, first=None, nb=None):
- self.x = x
- self.first = 0 if first is None else first
- self.nb = x.size(1) if nb is None else nb
-
- def slice(self):
- return self.x[:, self.first : self.first + self.nb]
-
- def complete(self):
- return self.first == 0 and self.nb == x.size(1)
-
-
-######################################################################
-
-
-class CacheWrapper(nn.Module):
- def __init__(self, *f):
- super().__init__()
- self.f = f[0] if len(f) == 1 else nn.Sequential(*f)
-
- def forward(self, bs):
- if bs.first == 0:
- y = self.f(bs.slice())
- self.cache_y = y.new(*((y.size(0), bs.x.size(1)) + y.size()[2:]))
- self.cache_y[:, bs.first : bs.first + bs.nb] = y
- else:
- self.cache_y[:, bs.first : bs.first + bs.nb] = self.f(bs.slice())
-
- return BracketedSequence(self.cache_y, bs.first, bs.nb)
-
-
-##############################
-
-
-class WithResidual(nn.Module):
- def __init__(self, *f):
- super().__init__()
- self.f = f[0] if len(f) == 1 else nn.Sequential(*f)
-
- def forward(self, bs):
- return BracketedSequence(bs.x + self.f(bs).x, bs.first, bs.nb)
-
-
-##############################
-
-
-class AddPositionalEncoding(nn.Module):
- def __init__(self, len_max):
- super().__init__()
- self.len_max = len_max
-
- # [Vaswani et al 2018] PE_{t,2i} = sin(t/(L^{2i/D})), PE_{t,2i+1} = cos(t/(L^{2i/D}))
-
- def forward(self, bs):
- if bs.first == 0:
- t = torch.arange(bs.x.size(1), dtype=bs.x.dtype, device=bs.x.device)[
- :, None
- ]
- j = torch.arange(bs.x.size(2), dtype=bs.x.dtype, device=bs.x.device)[
- None, :
- ]
- k = j % 2
- self.pe = torch.sin(
- t / (self.len_max ** ((j - k) / bs.x.size(2))) + math.pi / 2 * k
- )
- self.cache_y = bs.x.new(bs.x.size())
-
- self.cache_y[:, bs.first : bs.first + bs.nb] = (
- bs.slice() + self.pe[bs.first : bs.first + bs.nb]
- )
-
- return BracketedSequence(self.cache_y, bs.first, bs.nb)
-
-
-##############################
-
-
-class QKVAttention(nn.Module):
- def __init__(
- self,
- dim_in,
- dim_qk,
- dim_v,
- nb_heads=1,
- causal=False,
- attention_dropout=0.0,
- ):
- super().__init__()
-
- def randw(*d):
- return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1]))
-
- self.causal = causal
- self.attention_dropout = attention_dropout
- self.record_attention = False
-
- self.w_q = randw(nb_heads, dim_qk, dim_in)
- self.w_k = randw(nb_heads, dim_qk, dim_in)
- self.w_v = randw(nb_heads, dim_v, dim_in)
- self.w_o = randw(dim_v * nb_heads, dim_in)
-
- def forward(self, bs_q):
- x_q = bs_q.x
-
- assert (
- self.causal or bs_q.complete()
- ), "Partial evaluation is only possible for causal models"
-
- if bs_q.first == 0:
- self.cache_k = x_q.new_zeros(
- x_q.size(0), self.w_k.size(0), x_q.size(1), self.w_k.size(1)
- )
- self.cache_v = x_q.new_zeros(
- x_q.size(0), self.w_v.size(0), x_q.size(1), self.w_v.size(1)
- )
- self.cache_y = x_q.new_zeros(x_q.size(0), x_q.size(1), self.w_o.size(1))
-
- q = torch.einsum(
- "ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_q
- )
-
- self.cache_k[:, :, bs_q.first : bs_q.first + bs_q.nb] = torch.einsum(
- "ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_k
- )
- self.cache_v[:, :, bs_q.first : bs_q.first + bs_q.nb] = torch.einsum(
- "ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_v
- )
-
- a = torch.einsum(
- "nhtd,nhsd->nhts", q, self.cache_k[:, :, : bs_q.first + bs_q.nb]
- ) / math.sqrt(self.w_q.size(1))
-
- if self.record_attention:
- self.a = a
-
- if self.causal:
- if bs_q.first == 0:
- self.cache_attzero = (
- torch.arange(x_q.size(1), device=q.device)[None, None, :, None]
- < torch.arange(x_q.size(1), device=q.device)[None, None, None, :]
- )
- a = a.masked_fill(
- self.cache_attzero[
- :, :, bs_q.first : bs_q.first + bs_q.nb, : bs_q.first + bs_q.nb
- ],
- float("-inf"),
- )
-
- a = a.softmax(dim=3)
- a = F.dropout(a, self.attention_dropout, self.training)
-
- y = torch.einsum(
- "nhts,nhsd->nthd", a, self.cache_v[:, :, : bs_q.first + bs_q.nb]
- ).flatten(2)
-
- self.cache_y[:, bs_q.first : bs_q.first + bs_q.nb] = y @ self.w_o
-
- return BracketedSequence(self.cache_y, bs_q.first, bs_q.nb)
-
-
-##############################
-
-
-class MyGPT(nn.Module):
- def __init__(
- self,
- vocabulary_size,
- dim_model,
- dim_keys,
- dim_hidden,
- nb_heads,
- nb_blocks,
- causal=False,
- dropout=0.0,
- len_max=1e5,
- ):
- super().__init__()
-
- assert dim_model % nb_heads == 0
-
- self.embedding = nn.Sequential(
- CacheWrapper(nn.Embedding(vocabulary_size, dim_model), nn.Dropout(dropout)),
- AddPositionalEncoding(len_max),
- )
-
- trunk_blocks = []
-
- for b in range(nb_blocks):
- trunk_blocks += [
- WithResidual(
- CacheWrapper(nn.LayerNorm((dim_model,))),
- QKVAttention(
- dim_in=dim_model,
- dim_qk=dim_keys,
- dim_v=dim_model // nb_heads,
- nb_heads=nb_heads,
- causal=causal,
- attention_dropout=dropout,
- ),
- ),
- WithResidual(
- CacheWrapper(
- nn.LayerNorm((dim_model,)),
- nn.Linear(in_features=dim_model, out_features=dim_hidden),
- nn.ReLU(),
- nn.Linear(in_features=dim_hidden, out_features=dim_model),
- nn.Dropout(dropout),
- ),
- ),
- ]
-
- self.trunk = nn.Sequential(*trunk_blocks)
-
- self.readout = CacheWrapper(
- nn.Linear(in_features=dim_model, out_features=vocabulary_size)
- )
-
- with torch.no_grad():
- for m in self.modules():
- if isinstance(m, nn.Embedding):
- m.weight.normal_(mean=0, std=2e-2)
- elif isinstance(m, nn.LayerNorm):
- m.bias.zero_()
- m.weight.fill_(1.0)
-
- def forward(self, bs):
- bs = BracketedSequence(F.pad(bs.x, (1, -1)), bs.first, bs.nb)
- bs = self.embedding(bs)
- bs = self.trunk(bs)
- bs = self.readout(bs)
- return bs
-
- # ar_mask is a tensor with 0s and 1s, of same shape as input, with
- # 1s where tokens should be generated. The others are kept
- # unchanged.
-
- def masked_inplace_autoregression(
- self, input, ar_mask, forbidden_tokens=None, deterministic_synthesis=False
- ):
- to_generate = (ar_mask.sum(0) > 0).nonzero()
- if to_generate.min() > 0:
- self(
- BracketedSequence(input, 0, to_generate.min())
- ) # Needed to initialize the model's cache
- for s in range(to_generate.min(), to_generate.max() + 1):
- output = self(BracketedSequence(input, s, 1)).x
- logits = output[:, s]
- if forbidden_tokens is not None:
- logits = logits.masked_fill(forbidden_tokens, float("-inf"))
- if deterministic_synthesis:
- t_next = logits.argmax(1)
- else:
- dist = torch.distributions.categorical.Categorical(logits=logits)
- t_next = dist.sample()
- input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
-
- def record_attention(self, v=True):
- for m in self.modules():
- if isinstance(m, QKVAttention):
- m.record_attention = v
-
- def retrieve_attention(self):
- a = []
- for m in self.modules():
- if isinstance(m, QKVAttention):
- a.append(m.a)
- return a
-
-
-######################################################################
-
-if __name__ == "__main__":
- print("Basic check.")
-
- vocabulary_size = 3
- x = torch.randint(vocabulary_size, (1, 5))
-
- model = MyGPT(
- vocabulary_size=vocabulary_size,
- dim_model=4,
- dim_keys=2,
- dim_hidden=2,
- nb_heads=2,
- nb_blocks=2,
- dropout=0.1,
- causal=True,
- )
-
- model.eval()
- y1 = model(BracketedSequence(x)).x
- y2 = torch.randn_like(y1)
- for s in range(x.size(1)):
- z = model(BracketedSequence(x, s, 1))
- y2[:, s] = z.slice()
-
- print(f"error={((y1 - y2).norm() / (y1.norm() + y2.norm())).item()}")
-
-######################################################################