Update.
[culture.git] / grids.py
index 47e5861..85d640d 100755 (executable)
--- a/grids.py
+++ b/grids.py
@@ -32,11 +32,17 @@ class Grids(problem.Problem):
         ("gray", [128, 128, 128]),
     ]
 
-    def __init__(self, device=torch.device("cpu")):
+    def __init__(
+        self,
+        max_nb_cached_chunks=None,
+        chunk_size=None,
+        nb_threads=-1,
+    ):
         self.colors = torch.tensor([c for _, c in self.named_colors])
         self.height = 10
         self.width = 10
-        self.device = device
+        self.cache_rec_coo = {}
+        super().__init__(max_nb_cached_chunks, chunk_size, nb_threads)
 
     ######################################################################
 
@@ -110,10 +116,10 @@ class Grids(problem.Problem):
                 c = c.long()[:, None]
                 c = (
                     (1 - ((c == 1).long() + (c == 0).long() + (c == -1).long()))
-                    * torch.tensor([64, 64, 64], device=c.device)
-                    + (c == 1).long() * torch.tensor([0, 255, 0], device=c.device)
-                    + (c == 0).long() * torch.tensor([255, 255, 255], device=c.device)
-                    + (c == -1).long() * torch.tensor([255, 0, 0], device=c.device)
+                    * torch.tensor([64, 64, 64])
+                    + (c == 1).long() * torch.tensor([0, 255, 0])
+                    + (c == 0).long() * torch.tensor([255, 255, 255])
+                    + (c == -1).long() * torch.tensor([255, 0, 0])
                 )
                 y[...] = c[:, :, None, None]
 
@@ -195,121 +201,133 @@ class Grids(problem.Problem):
         return len(self.colors)
 
     # @torch.compile
-    def rec_coo_(self, nb_rec, min_height=3, min_width=3):
-        # @torch.compile
-        def overlap(ia, ja, ib, jb):
-            return (
-                ia[1] >= ib[0] and ia[0] <= ib[1] and ja[1] >= jb[0] and ja[0] <= jb[1]
-            )
+    def rec_coo(
+        self,
+        nb_rec,
+        min_height=3,
+        min_width=3,
+        surface_max=None,
+        prevent_overlap=False,
+    ):
+        if surface_max is None:
+            surface_max = self.height * self.width // 2
 
-        if nb_rec == 3:
-            while True:
-                i = torch.randint(self.height + 1, (nb_rec, 2)).sort(dim=1).values
-                j = torch.randint(self.width + 1, (nb_rec, 2)).sort(dim=1).values
-                if (
-                    not (
-                        overlap(i[0], j[0], i[1], j[1])
-                        or overlap(i[0], j[0], i[2], j[2])
-                        or overlap(i[1], j[1], i[2], j[2])
-                    )
-                    and (i[:, 1] - i[:, 0]).min() >= min_height
-                    and (j[:, 1] - j[:, 0]).min() >= min_width
-                ):
-                    break
-            return (
-                (i[0, 0], j[0, 0], i[0, 1], j[0, 1]),
-                (i[1, 0], j[1, 0], i[1, 1], j[1, 1]),
-                (i[2, 0], j[2, 0], i[2, 1], j[2, 1]),
-            )
+        signature = (nb_rec, min_height, min_width, surface_max)
 
-    # That's quite a tensorial spaghetti mess to sample
-    # non-overlapping rectangles quickly, but made the generation of
-    # 100k samples go from 1h50 with a lame pure python code to 3min30s
-    # with this one.
-    # @torch.compile
-    def rec_coo(self, nb_rec, min_height=3, min_width=3):
-        nb_trials = 200
+        try:
+            return self.cache_rec_coo[signature].pop()
+        except IndexError:
+            pass
+        except KeyError:
+            pass
 
+        N = 10000
         while True:
-            v = (
-                (
-                    torch.rand(nb_trials * nb_rec, self.height + 1, device=self.device)
-                    .sort(dim=-1)
-                    .indices
-                    < 2
-                )
-                .long()
-                .cumsum(dim=1)
-                == 1
-            ).long()
+            while True:
+                i = torch.randint(self.height, (N * nb_rec, 2)).sort(dim=-1).values
+                j = torch.randint(self.width, (N * nb_rec, 2)).sort(dim=-1).values
 
-            h = (
-                (
-                    torch.rand(nb_trials * nb_rec, self.width + 1, device=self.device)
-                    .sort(dim=-1)
-                    .indices
-                    < 2
+                big_enough = (
+                    (i[:, 1] >= i[:, 0] + min_height)
+                    & (j[:, 1] >= j[:, 0] + min_height)
+                    & ((i[:, 1] - i[:, 0]) * (j[:, 1] - j[:, 0]) <= surface_max)
                 )
-                .long()
-                .cumsum(dim=1)
-                == 1
-            ).long()
-
-            i = torch.logical_and(
-                v.sum(dim=-1) >= min_height, h.sum(dim=-1) >= min_width
-            )
 
-            v, h = v[i], h[i]
-            v = v[: v.size(0) - v.size(0) % nb_rec]
-            h = h[: h.size(0) - h.size(0) % nb_rec]
-            v = v.reshape(v.size(0) // nb_rec, nb_rec, -1)
-            h = h.reshape(h.size(0) // nb_rec, nb_rec, -1)
+                i, j = i[big_enough], j[big_enough]
 
-            r = v[:, :, :, None] * h[:, :, None, :]
+                n = i.size(0) - i.size(0) % nb_rec
 
-            valid = r.sum(dim=1).flatten(1).max(dim=-1).values == 1
+                if n > 0:
+                    break
 
-            v = v[valid]
-            h = h[valid]
+            i = i[:n].reshape(n // nb_rec, nb_rec, -1)
+            j = j[:n].reshape(n // nb_rec, nb_rec, -1)
+
+            if prevent_overlap:
+                can_fit = ((i[:, :, 1] - i[:, :, 0]) * (j[:, :, 1] - j[:, :, 0])).sum(
+                    dim=-1
+                ) <= self.height * self.width
+                i, j = i[can_fit], j[can_fit]
+                if nb_rec == 2:
+                    A_i1, A_i2, A_j1, A_j2 = (
+                        i[:, 0, 0],
+                        i[:, 0, 1],
+                        j[:, 0, 0],
+                        j[:, 0, 1],
+                    )
+                    B_i1, B_i2, B_j1, B_j2 = (
+                        i[:, 1, 0],
+                        i[:, 1, 1],
+                        j[:, 1, 0],
+                        j[:, 1, 1],
+                    )
+                    no_overlap = torch.logical_not(
+                        (A_i1 >= B_i2)
+                        & (A_i2 <= B_i1)
+                        & (A_j1 >= B_j1)
+                        & (A_j2 <= B_j1)
+                    )
+                    i, j = i[no_overlap], j[no_overlap]
+                elif nb_rec == 3:
+                    A_i1, A_i2, A_j1, A_j2 = (
+                        i[:, 0, 0],
+                        i[:, 0, 1],
+                        j[:, 0, 0],
+                        j[:, 0, 1],
+                    )
+                    B_i1, B_i2, B_j1, B_j2 = (
+                        i[:, 1, 0],
+                        i[:, 1, 1],
+                        j[:, 1, 0],
+                        j[:, 1, 1],
+                    )
+                    C_i1, C_i2, C_j1, C_j2 = (
+                        i[:, 2, 0],
+                        i[:, 2, 1],
+                        j[:, 2, 0],
+                        j[:, 2, 1],
+                    )
+                    no_overlap = (
+                        (
+                            (A_i1 >= B_i2)
+                            | (A_i2 <= B_i1)
+                            | (A_j1 >= B_j2)
+                            | (A_j2 <= B_j1)
+                        )
+                        & (
+                            (A_i1 >= C_i2)
+                            | (A_i2 <= C_i1)
+                            | (A_j1 >= C_j2)
+                            | (A_j2 <= C_j1)
+                        )
+                        & (
+                            (B_i1 >= C_i2)
+                            | (B_i2 <= C_i1)
+                            | (B_j1 >= C_j2)
+                            | (B_j2 <= C_j1)
+                        )
+                    )
+                    i, j = (i[no_overlap], j[no_overlap])
+                else:
+                    assert nb_rec == 1
 
-            if v.size(0) > 0:
+            if i.size(0) > 1:
                 break
 
-        av = torch.arange(v.size(2), device=self.device)[None, :]
-        ah = torch.arange(h.size(2), device=self.device)[None, :]
-
-        return [
-            (i1.item(), j1.item(), i2.item() + 1, j2.item() + 1)
-            for i1, j1, i2, j2 in zip(
-                v.size(2) - (v[0] * (v.size(2) - av)).max(dim=-1).values,
-                h.size(2) - (h[0] * (h.size(2) - ah)).max(dim=-1).values,
-                (v[0] * av).max(dim=-1).values,
-                (h[0] * ah).max(dim=-1).values,
-            )
+        self.cache_rec_coo[signature] = [
+            [
+                (
+                    i[n, k, 0].item(),
+                    j[n, k, 0].item(),
+                    i[n, k, 1].item(),
+                    j[n, k, 1].item(),
+                )
+                for k in range(nb_rec)
+            ]
+            for n in range(i.size(0))
         ]
 
-    # @torch.compile
-    def rec_coo_(self, x, n, min_height=3, min_width=3):
-        collision = x.new(x.size())
-        while True:
-            collision[...] = 0
-            result = []
-            for _ in range(n):
-                while True:
-                    i1, i2 = torch.randint(x.size(0), (2,))
-                    if i1 + min_height <= i2:
-                        break
-                while True:
-                    j1, j2 = torch.randint(x.size(1), (2,))
-                    if j1 + min_width <= j2:
-                        break
-                collision[i1:i2, j1:j2] += 1
-                if collision.max() > 1:
-                    break
-                result.append((i1, j1, i2, j2))
-            if collision.max() == 1:
-                break
-        return result
+        return self.cache_rec_coo[signature].pop()
 
     ######################################################################
 
@@ -318,7 +336,7 @@ class Grids(problem.Problem):
         nb_rec = 3
         c = torch.randperm(len(self.colors) - 1)[: nb_rec + 1] + 1
         for X, f_X in [(A, f_A), (B, f_B)]:
-            r = self.rec_coo(nb_rec)
+            r = self.rec_coo(nb_rec, prevent_overlap=True)
             for n in range(nb_rec):
                 i1, j1, i2, j2 = r[n]
                 X[i1:i2, j1:j2] = c[n]
@@ -331,7 +349,7 @@ class Grids(problem.Problem):
         c = torch.randperm(len(self.colors) - 1)[:nb_rec] + 1
         for X, f_X in [(A, f_A), (B, f_B)]:
             while True:
-                r = self.rec_coo(nb_rec)
+                r = self.rec_coo(nb_rec, prevent_overlap=True)
                 i1, j1, i2, j2 = r[nb_rec - 1]
                 if (
                     i1 + di >= 0
@@ -357,7 +375,7 @@ class Grids(problem.Problem):
         direction = torch.randint(2, (1,))
         for X, f_X in [(A, f_A), (B, f_B)]:
             while True:
-                r = self.rec_coo(nb_rec)
+                r = self.rec_coo(nb_rec, prevent_overlap=True)
                 i1, j1, i2, j2 = r[nb_rec - 1]
                 if i1 + 3 < i2 and j1 + 3 < j2:
                     break
@@ -382,7 +400,7 @@ class Grids(problem.Problem):
         c = torch.randperm(len(self.colors) - 1)[: 2 * nb_rec] + 1
         direction = torch.randint(4, (1,))
         for X, f_X in [(A, f_A), (B, f_B)]:
-            r = self.rec_coo(nb_rec)
+            r = self.rec_coo(nb_rec, prevent_overlap=True)
             for n in range(nb_rec):
                 i1, j1, i2, j2 = r[n]
                 X[i1:i2, j1:j2] = c[2 * n]
@@ -422,20 +440,24 @@ class Grids(problem.Problem):
         nb_rec = 3
         c = torch.randperm(len(self.colors) - 1)[: nb_rec + 1] + 1
         for X, f_X in [(A, f_A), (B, f_B)]:
-            r = self.rec_coo(nb_rec)
+            r = self.rec_coo(nb_rec, prevent_overlap=True)
             for n in range(nb_rec):
                 i1, j1, i2, j2 = r[n]
                 X[i1:i2, j1:j2] = c[n]
-                f_X[i1:i2, j1:j2] = c[n]
                 if n == nb_rec - 1:
-                    f_X[i1 + 1 : i2 - 1, j1 + 1 : j2 - 1] = 0
+                    f_X[i1:i2, j1] = c[n]
+                    f_X[i1:i2, j2 - 1] = c[n]
+                    f_X[i1, j1:j2] = c[n]
+                    f_X[i2 - 1, j1:j2] = c[n]
+                else:
+                    f_X[i1:i2, j1:j2] = c[n]
 
     # @torch.compile
     def task_detect(self, A, f_A, B, f_B):
         nb_rec = 3
         c = torch.randperm(len(self.colors) - 1)[: nb_rec + 1] + 1
         for X, f_X in [(A, f_A), (B, f_B)]:
-            r = self.rec_coo(nb_rec)
+            r = self.rec_coo(nb_rec, prevent_overlap=True)
             for n in range(nb_rec):
                 i1, j1, i2, j2 = r[n]
                 X[i1:i2, j1:j2] = c[n]
@@ -478,29 +500,62 @@ class Grids(problem.Problem):
 
         return no, nq, nq_diag
 
-    # @torch.compile
     def task_count(self, A, f_A, B, f_B):
         N = (torch.randint(4, (1,)) + 2).item()
         c = torch.randperm(len(self.colors) - 1)[:N] + 1
 
         for X, f_X in [(A, f_A), (B, f_B)]:
+            l_q = torch.randperm(self.height * self.width)[
+                : self.height * self.width // 20
+            ]
+            l_d = torch.randint(N, l_q.size())
             nb = torch.zeros(N, dtype=torch.int64)
-            q = torch.randint(N, (self.height * self.width,))
-            k = torch.randperm(self.height * self.width)
-            for p in range(self.height * self.width):
-                i, j = k[p] % self.height, k[p] // self.height
-                no, nq, nq_diag = self.contact(X, i, j, c[q[p]])
-                if no == 0 and nq_diag == 0:
-                    if nq == 0:
-                        if nb[q[p]] < self.width:
-                            X[i, j] = c[q[p]]
-                            nb[q[p]] += 1
-                    if nq == 1:
-                        X[i, j] = c[q[p]]
-
-            for n in range(N):
-                for j in range(nb[n]):
-                    f_X[n, j] = c[n]
+
+            for q, e in zip(l_q, l_d):
+                d = c[e]
+                i, j = q % self.height, q // self.height
+                if (
+                    nb[e] < self.width
+                    and X[max(0, i - 1) : i + 2, max(0, j - 1) : j + 2] == 0
+                ).all():
+                    X[i, j] = d
+                    nb[e] += 1
+
+            l_q = torch.randperm((self.height - 2) * (self.width - 2))[
+                : self.height * self.width // 2
+            ]
+            l_d = torch.randint(N, l_q.size())
+            for q, e in zip(l_q, l_d):
+                d = c[e]
+                i, j = q % (self.height - 2) + 1, q // (self.height - 2) + 1
+                a1, a2, a3 = X[i - 1, j - 1 : j + 2]
+                a8, a4 = X[i, j - 1], X[i, j + 1]
+                a7, a6, a5 = X[i + 1, j - 1 : j + 2]
+                if (
+                    X[i, j] == 0
+                    and nb[e] < self.width
+                    and (a2 == 0 or a2 == d)
+                    and (a4 == 0 or a4 == d)
+                    and (a6 == 0 or a6 == d)
+                    and (a8 == 0 or a8 == d)
+                    and (a1 == 0 or a2 == d or a8 == d)
+                    and (a3 == 0 or a4 == d or a2 == d)
+                    and (a5 == 0 or a6 == d or a4 == d)
+                    and (a7 == 0 or a8 == d or a6 == d)
+                ):
+                    o = (
+                        (a2 != 0).long()
+                        + (a4 != 0).long()
+                        + (a6 != 0).long()
+                        + (a8 != 0).long()
+                    )
+                    if o <= 1:
+                        X[i, j] = d
+                        nb[e] += 1 - o
+
+            for e in range(N):
+                for j in range(nb[e]):
+                    f_X[e, j] = c[e]
 
     # @torch.compile
     def task_trajectory(self, A, f_A, B, f_B):
@@ -747,9 +802,7 @@ class Grids(problem.Problem):
         f_Bs = answers
         return (Bs == f_Bs).long().min(dim=-1).values > 0
 
-    def generate_prompts_and_answers(
-        self, nb, tasks=None, progress_bar=False, device="cpu"
-    ):
+    def generate_prompts_and_answers_(self, nb, tasks=None, progress_bar=False):
         if tasks is None:
             tasks = self.all_tasks()
 
@@ -803,6 +856,7 @@ class Grids(problem.Problem):
 if __name__ == "__main__":
     import time
 
+    # grids = Grids(max_nb_cached_chunks=5, chunk_size=100, nb_threads=4)
     grids = Grids()
 
     # nb = 1000
@@ -816,22 +870,21 @@ if __name__ == "__main__":
     # print(f"{prompts.size(0)/delay:02f} seq/s")
     # exit(0)
 
-    if True:
-        nb = 72
-
-        for t in grids.all_tasks():
-            # for t in [grids.task_ortho]:
-            print(t.__name__)
-            prompts, answers = grids.generate_prompts_and_answers(nb, tasks=[t])
-            grids.save_quizzes("/tmp", t.__name__, prompts[:nb], answers[:nb], nrow=4)
+    # if True:
+    nb = 72
 
-        exit(0)
+    for t in grids.all_tasks():
+        # for t in [grids.task_replace_color]:
+        print(t.__name__)
+        prompts, answers = grids.generate_prompts_and_answers_(nb, tasks=[t])
+        grids.save_quizzes("/tmp", t.__name__, prompts[:nb], answers[:nb], nrow=4)
 
-    nb = 500
+    nb = 1000
 
     for t in grids.all_tasks():
+        # for t in [ grids.task_replace_color ]: #grids.all_tasks():
         start_time = time.perf_counter()
-        prompts, answers = grids.generate_prompts_and_answers(nb, tasks=[t])
+        prompts, answers = grids.generate_prompts_and_answers_(nb, tasks=[t])
         delay = time.perf_counter() - start_time
         print(f"{t.__name__} {prompts.size(0)/delay:02f} seq/s")