Update.
[culture.git] / quizz_machine.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 import math, os, tqdm, warnings
9
10 import torch, torchvision
11
12 from torch import nn
13 from torch.nn import functional as F
14
15 from mygpt import BracketedSequence
16
17 ######################################################################
18
19
20 def masked_inplace_autoregression(
21     model,
22     batch_size,
23     input,
24     ar_mask,
25     seq_logproba,
26     temperature,
27     deterministic_synthesis,
28     forbidden_tokens=None,
29     logit_biases=None,
30     progress_bar_desc="autoregression",
31     device=torch.device("cpu"),
32 ):
33     assert input.size() == ar_mask.size()
34
35     batches = zip(
36         input.split(batch_size),
37         ar_mask.split(batch_size),
38         seq_logproba.split(batch_size),
39     )
40
41     if progress_bar_desc is not None:
42         batches = tqdm.tqdm(
43             batches,
44             dynamic_ncols=True,
45             desc=progress_bar_desc,
46             total=(input.size(0) + batch_size - 1) // batch_size,
47         )
48
49     with torch.autograd.no_grad():
50         t = model.training
51         model.eval()
52
53         for input, ar_mask, seq_logproba in batches:
54             model.masked_inplace_autoregression(
55                 input=input,
56                 ar_mask=ar_mask,
57                 seq_logproba=seq_logproba,
58                 temperature=temperature,
59                 deterministic_synthesis=deterministic_synthesis,
60                 forbidden_tokens=forbidden_tokens,
61                 forced_biases=logit_biases,
62             )
63
64         model.train(t)
65
66
67 ######################################################################
68
69
70 class QuizzMachine:
71     def make_ar_mask(self, input):
72         b = torch.arange(input.size(1), device=input.device) > input.size(1) // 2
73         return b.long()[None, :].expand_as(input)
74
75     def __init__(
76         self,
77         problem,
78         nb_train_samples,
79         nb_test_samples,
80         batch_size,
81         result_dir=None,
82         logger=None,
83         device=torch.device("cpu"),
84     ):
85         super().__init__()
86
87         self.problem = problem
88         self.batch_size = batch_size
89         self.device = device
90
91         self.train_w_quizzes = self.problem.generate_seq(nb_train_samples).to(device)
92         self.test_w_quizzes = self.problem.generate_seq(nb_test_samples).to(device)
93
94         self.nb_codes = max(self.train_w_quizzes.max(), self.test_w_quizzes.max()) + 1
95
96         self.train_c_quizzes = []
97         self.test_c_quizzes = []
98
99         if result_dir is not None:
100             self.problem.save_quizzes(
101                 self.train_w_quizzes[:72], result_dir, f"culture_w_quizzes", logger
102             )
103
104     def batches(self, split="train", desc=None):
105         assert split in {"train", "test"}
106         if split == "train":
107             w_quizzes = self.train_w_quizzes
108             c_quizzes = self.train_c_quizzes
109         else:
110             w_quizzes = self.test_w_quizzes
111             c_quizzes = self.test_c_quizzes
112
113         if len(c_quizzes) > 0:
114             c_quizzes = torch.cat(c_quizzes, dim=0)
115             if c_quizzes.size(0) > w_quizzes.size(0) // 2:
116                 i = torch.randperm(w_quizzes.size(0))[: w_quizzes.size(0) // 2]
117                 c_quizzes = c_quizzes[i]
118
119             i = torch.randperm(w_quizzes.size(0))[
120                 : w_quizzes.size(0) - c_quizzes.size(0)
121             ]
122             w_quizzes = w_quizzes[i]
123
124             self.nb_batch_w_quizzes = w_quizzes.size(0)
125             self.nb_batch_c_quizzes = c_quizzes.size(0)
126
127             input = torch.cat([w_quizzes, c_quizzes], dim=0)
128         else:
129             input = w_quizzes
130             self.nb_batch_w_quizzes = w_quizzes.size(0)
131             self.nb_batch_c_quizzes = 0
132
133         # Shuffle
134         input = input[torch.randperm(input.size(0))]
135
136         if desc is None:
137             desc = f"epoch-{split}"
138         for batch in tqdm.tqdm(
139             input.split(self.batch_size), dynamic_ncols=True, desc=desc
140         ):
141             yield batch
142
143     def vocabulary_size(self):
144         return self.nb_codes
145
146     def produce_results(
147         self, n_epoch, model, result_dir, logger, deterministic_synthesis, nmax=1000
148     ):
149         def compute_accuracy(input, logger=None):
150             input = input[:nmax]
151             ar_mask = self.make_ar_mask(input)
152             result = input.clone() * (1 - ar_mask)
153             seq_logproba = torch.empty(input.size(0), device=self.device)
154
155             masked_inplace_autoregression(
156                 model=model,
157                 batch_size=self.batch_size,
158                 input=result,
159                 ar_mask=ar_mask,
160                 seq_logproba=seq_logproba,
161                 temperature=1.0,
162                 deterministic_synthesis=deterministic_synthesis,
163                 progress_bar_desc=None,
164                 device=self.device,
165             )
166
167             nb_total, nb_correct = (
168                 input.size(0),
169                 (input == result).long().min(dim=1).values.sum(),
170             )
171
172             return nb_total, nb_correct
173
174         train_nb_total, train_nb_correct = compute_accuracy(self.train_w_quizzes)
175
176         logger(
177             f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
178         )
179
180         test_nb_total, test_nb_correct = compute_accuracy(self.test_w_quizzes, logger)
181
182         logger(
183             f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
184         )
185
186         main_test_accuracy = test_nb_correct / test_nb_total
187         logger(f"main_test_accuracy {n_epoch} {main_test_accuracy}")
188
189         ##############################
190
191         input = self.test_w_quizzes[:96]
192         ar_mask = self.make_ar_mask(input)
193         result = input.clone() * (1 - ar_mask)
194         seq_logproba = torch.empty(input.size(0), device=self.device)
195
196         masked_inplace_autoregression(
197             model=model,
198             batch_size=self.batch_size,
199             input=result,
200             ar_mask=ar_mask,
201             seq_logproba=seq_logproba,
202             temperature=1.0,
203             deterministic_synthesis=deterministic_synthesis,
204             progress_bar_desc=None,
205             device=self.device,
206         )
207
208         self.problem.save_quizzes(
209             result[:72],
210             result_dir,
211             f"culture_prediction_{n_epoch:04d}_{model.id:02d}",
212             logger,
213         )
214
215         return main_test_accuracy
216
217     def renew_w_quizzes(self, nb, for_train=True):
218         input = self.train_w_quizzes if for_train else self.test_w_quizzes
219         nb = min(nb, input.size(0))
220         input[:-nb] = input[nb:].clone()
221         input[-nb:] = self.problem.generate_seq(nb).to(self.device)
222
223     def store_c_quizzes(self, new_c_quizzes, for_train=True):
224         if for_train:
225             self.train_c_quizzes.append(new_c_quizzes)
226         else:
227             self.test_c_quizzes.append(new_c_quizzes)
228
229     def create_c_quizzes(
230         self,
231         n_epoch,
232         result_dir,
233         logger,
234         nb,
235         model,
236         other_models,
237         min_ave_seq_logproba,
238     ):
239         ###############################################################
240         # Generate quizzes with model
241
242         c_quizzes = torch.empty(
243             nb, self.train_w_quizzes.size(1), device=self.device, dtype=torch.int64
244         )
245
246         ar_mask = torch.full(c_quizzes.size(), 1, device=self.device)
247         seq_logproba = torch.empty(ar_mask.size(0), device=self.device)
248
249         temperature = 1
250         d_temperature = 1 / 3
251
252         while True:
253             seq_logproba[...] = 0
254
255             masked_inplace_autoregression(
256                 model=model,
257                 batch_size=self.batch_size,
258                 input=c_quizzes,
259                 ar_mask=ar_mask,
260                 seq_logproba=seq_logproba,
261                 temperature=temperature,
262                 deterministic_synthesis=False,
263                 progress_bar_desc="sampling c_quizzes",
264                 device=self.device,
265             )
266
267             ave_seq_logproba = seq_logproba.mean()
268
269             if min_ave_seq_logproba is None:
270                 break
271
272             # Oh man that's ugly
273             if ave_seq_logproba < min_ave_seq_logproba:
274                 if d_temperature > 0:
275                     d_temperature *= -1 / 3
276                 temperature += d_temperature
277             elif ave_seq_logproba > min_ave_seq_logproba * 0.99:
278                 if d_temperature < 0:
279                     d_temperature *= -1 / 3
280                 temperature += d_temperature
281             else:
282                 break
283
284             logger(f"chaging temperature to {temperature}")
285
286         ###############################################################
287         # Create the reverse quizzes
288
289         token_forward, token_backward = self.problem.direction_tokens()
290
291         l = (c_quizzes.size(1) - 1) // 2
292         direction = c_quizzes[:, l : l + 1]
293         direction = self.problem.token_forward * (
294             direction == self.problem.token_backward
295         ) + self.problem.token_backward * (direction == self.problem.token_forward)
296         reverse_c_quizzes = torch.cat(
297             [c_quizzes[:, l + 1 :], direction, c_quizzes[:, :l]], dim=1
298         )
299
300         ar_mask = self.make_ar_mask(c_quizzes)
301         seq_logproba = torch.empty(ar_mask.size(0), device=self.device)
302
303         ###############################################################
304         # Check how many of the other models can solve them in both
305         # directions
306
307         nb_correct = []
308
309         for m in other_models:
310             result = c_quizzes.clone()
311
312             masked_inplace_autoregression(
313                 model=m,
314                 batch_size=self.batch_size,
315                 input=result,
316                 ar_mask=ar_mask,
317                 seq_logproba=seq_logproba,
318                 temperature=1.0,
319                 deterministic_synthesis=True,
320                 progress_bar_desc="solving c_quizzes",
321                 device=self.device,
322             )
323
324             correct = (c_quizzes == result).long().min(dim=-1).values
325
326             reverse_result = reverse_c_quizzes.clone()
327
328             masked_inplace_autoregression(
329                 model=m,
330                 batch_size=self.batch_size,
331                 input=reverse_result,
332                 ar_mask=ar_mask,
333                 seq_logproba=seq_logproba,
334                 temperature=1.0,
335                 deterministic_synthesis=True,
336                 progress_bar_desc="solving reversed c_quizzes",
337                 device=self.device,
338             )
339
340             reverse_correct = (
341                 (reverse_c_quizzes == reverse_result).long().min(dim=-1).values
342             )
343
344             nb_correct.append((correct * reverse_correct)[None, :])
345
346         nb_correct = torch.cat(nb_correct, dim=0).sum(dim=0)
347
348         return c_quizzes, nb_correct, seq_logproba.mean()