Update.
[culture.git] / quizz_machine.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 import math, os, tqdm, warnings
9
10 import torch, torchvision
11
12 from torch import nn
13 from torch.nn import functional as F
14
15 import mygpt
16 from mygpt import BracketedSequence
17
18 ######################################################################
19
20 # ar_mask is a tensor with 0s and 1s, of same shape as input, with
21 # 1s where tokens should be generated. The others are kept
22 # unchanged.
23
24
25 def one_batch_masked_inplace_autoregression(
26     model,
27     input,
28     ar_mask,
29     seq_logproba,
30     temperature=1.0,
31     deterministic_synthesis=False,
32 ):
33     to_generate = (ar_mask.sum(0) > 0).nonzero()
34
35     if to_generate.min() > 0:
36         model(
37             BracketedSequence(input, 0, to_generate.min())
38         )  # Needed to initialize the model's cache
39     for s in range(to_generate.min(), to_generate.max() + 1):
40         output = model(BracketedSequence(input, s, 1)).x
41
42         logits = output[:, s]
43
44         logits = (logits / temperature).log_softmax(dim=-1)
45
46         if deterministic_synthesis:
47             t_next = logits.argmax(-1)
48         else:
49             dist = torch.distributions.categorical.Categorical(logits=logits)
50             t_next = dist.sample()
51
52         all_n = torch.arange(t_next.size(0))
53         seq_logproba += logits[all_n, t_next].sum(dim=-1)
54
55         input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
56
57
58 def masked_inplace_autoregression(
59     model,
60     batch_size,
61     input,
62     ar_mask,
63     seq_logproba,
64     temperature,
65     deterministic_synthesis,
66     forbidden_tokens=None,
67     logit_biases=None,
68     progress_bar_desc=None,
69     device=torch.device("cpu"),
70 ):
71     assert input.size() == ar_mask.size()
72
73     batches = zip(
74         input.split(batch_size),
75         ar_mask.split(batch_size),
76         seq_logproba.split(batch_size),
77     )
78
79     if progress_bar_desc is not None:
80         batches = tqdm.tqdm(
81             batches,
82             dynamic_ncols=True,
83             desc=progress_bar_desc,
84             total=(input.size(0) + batch_size - 1) // batch_size,
85         )
86
87     with torch.autograd.no_grad():
88         t = model.training
89         model.eval()
90
91         for input, ar_mask, seq_logproba in batches:
92             one_batch_masked_inplace_autoregression(
93                 model=model,
94                 input=input,
95                 ar_mask=ar_mask,
96                 seq_logproba=seq_logproba,
97                 temperature=temperature,
98                 deterministic_synthesis=deterministic_synthesis,
99             )
100
101         model.train(t)
102
103
104 ######################################################################
105
106
107 class QuizzMachine:
108     def indices_forward_and_backward(self, quizzes):
109         i_forward = quizzes[:, 0] == self.token_forward
110         j_forward = quizzes[:, 1 + self.prompt_len] == self.token_forward
111         i_backward = quizzes[:, 0] == self.token_backward
112         j_backward = quizzes[:, 1 + self.answer_len] == self.token_backward
113         assert torch.logical_or(
114             torch.logical_and(i_forward, j_forward),
115             torch.logical_and(i_backward, j_backward),
116         ).all()
117         return i_forward, i_backward
118
119     def reverse_time(self, quizzes):
120         i_forward, i_backward = self.indices_forward_and_backward(quizzes)
121
122         forward_to_backward = torch.cat(
123             [
124                 quizzes[:, 0:1],
125                 quizzes[:, 2 + self.prompt_len :],
126                 quizzes[:, 1 + self.prompt_len : 2 + self.prompt_len],
127                 quizzes[:, 1 : 1 + self.prompt_len],
128             ],
129             dim=1,
130         )
131         forward_to_backward[:, 0] = self.token_backward
132         forward_to_backward[:, 1 + self.answer_len] = self.token_backward
133
134         backward_to_forward = torch.cat(
135             [
136                 quizzes[:, 0:1],
137                 quizzes[:, 2 + self.answer_len :],
138                 quizzes[:, 1 + self.answer_len : 2 + self.answer_len],
139                 quizzes[:, 1 : 1 + self.answer_len],
140             ],
141             dim=1,
142         )
143
144         backward_to_forward[:, 0] = self.token_forward
145         backward_to_forward[:, 1 + self.prompt_len] = self.token_forward
146
147         m = i_forward.long()[:, None]
148
149         return m * forward_to_backward + (1 - m) * backward_to_forward
150
151     def make_ar_mask(self, quizzes, first=False):
152         i_forward, i_backward = self.indices_forward_and_backward(quizzes)
153
154         t = torch.arange(quizzes.size(1), device=quizzes.device)
155
156         if first:
157             m_forward = (t >= 1).long() * (t < 1 + self.prompt_len).long()
158             m_backward = (t >= 1).long() * (t < 1 + self.answer_len).long()
159         else:
160             m_forward = (t >= 2 + self.prompt_len).long()
161             m_backward = (t >= 2 + self.answer_len).long()
162
163         m = i_forward.long()[:, None]
164
165         return m * m_forward + (1 - m) * m_backward
166
167     def generate_token_sequences(self, nb):
168         prompts, answers = self.problem.generate_prompts_and_answers(nb)
169
170         if self.prompt_len is None:
171             self.prompt_len = prompts.size(1)
172
173         if self.answer_len is None:
174             self.answer_len = answers.size(1)
175
176         assert prompts.size(1) == self.prompt_len and answers.size(1) == self.answer_len
177
178         result = []
179
180         for prompt, answer in zip(prompts, answers):
181             if torch.rand(1) < 0.5:
182                 a = [
183                     torch.tensor([self.token_forward]),
184                     prompt,
185                     torch.tensor([self.token_forward]),
186                     answer,
187                 ]
188             else:
189                 a = [
190                     torch.tensor([self.token_backward]),
191                     answer,
192                     torch.tensor([self.token_backward]),
193                     prompt,
194                 ]
195
196             result.append(torch.cat(a, dim=0)[None, :])
197
198         return torch.cat(result, dim=0)
199
200     def __init__(
201         self,
202         problem,
203         nb_train_samples,
204         nb_test_samples,
205         batch_size,
206         result_dir,
207         logger,
208         device=torch.device("cpu"),
209     ):
210         super().__init__()
211
212         v = problem.nb_token_values()
213         self.token_forward = v
214         self.token_backward = v + 1
215         self.nb_token_values = v + 2
216
217         self.problem = problem
218         self.batch_size = batch_size
219         self.device = device
220         self.logger = logger
221         self.prompt_len = None
222         self.answer_len = None
223
224         self.train_w_quizzes = self.generate_token_sequences(nb_train_samples).to(
225             device
226         )
227
228         self.test_w_quizzes = self.generate_token_sequences(nb_test_samples).to(device)
229
230         self.train_c_quizzes = []
231         self.test_c_quizzes = []
232
233         if result_dir is not None:
234             self.save_quizzes(
235                 result_dir, "culture_w_quizzes", self.train_w_quizzes[:72]
236             )
237
238             # toto = self.reverse_time(self.train_w_quizzes[:72])
239             # self.save_quizzes(result_dir, "toto", toto)
240             # exit(0)
241
242     def save_quizzes(self, result_dir, filename_prefix, quizzes, prediction=False):
243         forward = quizzes[quizzes[:, 0] == self.token_forward]
244         ib = quizzes[:, 0] == self.token_backward
245         backward = quizzes[ib]
246         assert forward.size(0) + backward.size(0) == quizzes.size(0)
247         quizzes[ib] = self.reverse_time(quizzes[ib])
248
249         if prediction:
250             predicted_prompts = ib
251             predicted_answers = torch.logical_not(ib)
252         else:
253             predicted_prompts = None
254             predicted_answers = None
255
256         self.problem.save_quizzes(
257             result_dir,
258             filename_prefix,
259             quizzes[:, 1 : 1 + self.prompt_len],
260             quizzes[:, 2 + self.prompt_len :],
261             predicted_prompts,
262             predicted_answers,
263         )
264
265     def batches(self, split="train", desc=None):
266         assert split in {"train", "test"}
267         if split == "train":
268             w_quizzes = self.train_w_quizzes
269             c_quizzes = self.train_c_quizzes
270         else:
271             w_quizzes = self.test_w_quizzes
272             c_quizzes = self.test_c_quizzes
273
274         if len(c_quizzes) > 0:
275             c_quizzes = torch.cat(c_quizzes, dim=0)
276             if c_quizzes.size(0) > w_quizzes.size(0) // 2:
277                 i = torch.randperm(c_quizzes.size(0))[: w_quizzes.size(0) // 2]
278                 c_quizzes = c_quizzes[i]
279
280             i = torch.randperm(w_quizzes.size(0))[
281                 : w_quizzes.size(0) - c_quizzes.size(0)
282             ]
283             w_quizzes = w_quizzes[i]
284
285             self.nb_batch_w_quizzes = w_quizzes.size(0)
286             self.nb_batch_c_quizzes = c_quizzes.size(0)
287
288             input = torch.cat([w_quizzes, c_quizzes], dim=0)
289         else:
290             input = w_quizzes
291             self.nb_batch_w_quizzes = w_quizzes.size(0)
292             self.nb_batch_c_quizzes = 0
293
294         # Shuffle
295         input = input[torch.randperm(input.size(0))]
296
297         if desc is None:
298             desc = f"epoch-{split}"
299         for batch in tqdm.tqdm(
300             input.split(self.batch_size), dynamic_ncols=True, desc=desc
301         ):
302             yield batch
303
304     def vocabulary_size(self):
305         return self.nb_token_values
306
307     def produce_results(
308         self, n_epoch, model, result_dir, deterministic_synthesis, nmax=1000
309     ):
310         def compute_accuracy(input):
311             input = input[:nmax]
312             ar_mask = self.make_ar_mask(input)
313             result = input.clone() * (1 - ar_mask)
314             seq_logproba = torch.empty(input.size(0), device=self.device)
315
316             masked_inplace_autoregression(
317                 model=model,
318                 batch_size=self.batch_size,
319                 input=result,
320                 ar_mask=ar_mask,
321                 seq_logproba=seq_logproba,
322                 temperature=1.0,
323                 deterministic_synthesis=deterministic_synthesis,
324                 progress_bar_desc=None,
325                 device=self.device,
326             )
327
328             nb_total = input.size(0)
329             nb_correct = (input == result).long().min(dim=1).values.sum()
330
331             return nb_total, nb_correct
332
333         train_nb_total, train_nb_correct = compute_accuracy(self.train_w_quizzes)
334
335         self.logger(
336             f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
337         )
338
339         test_nb_total, test_nb_correct = compute_accuracy(self.test_w_quizzes)
340
341         self.logger(
342             f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
343         )
344
345         main_test_accuracy = test_nb_correct / test_nb_total
346         self.logger(f"main_test_accuracy {n_epoch} {main_test_accuracy}")
347
348         ##############################
349
350         input = self.test_w_quizzes[:96]
351         ar_mask = self.make_ar_mask(input)
352         result = input.clone() * (1 - ar_mask)
353         seq_logproba = torch.empty(input.size(0), device=self.device)
354
355         masked_inplace_autoregression(
356             model=model,
357             batch_size=self.batch_size,
358             input=result,
359             ar_mask=ar_mask,
360             seq_logproba=seq_logproba,
361             temperature=1.0,
362             deterministic_synthesis=deterministic_synthesis,
363             progress_bar_desc=None,
364             device=self.device,
365         )
366
367         self.save_quizzes(
368             result_dir,
369             f"culture_prediction_{n_epoch:04d}_{model.id:02d}",
370             quizzes=result[:72],
371             prediction=True,
372         )
373
374         return main_test_accuracy
375
376     def renew_w_quizzes(self, nb, for_train=True):
377         input = self.train_w_quizzes if for_train else self.test_w_quizzes
378         nb = min(nb, input.size(0))
379         input[:-nb] = input[nb:].clone()
380         input[-nb:] = self.generate_token_sequences(nb).to(self.device)
381
382     def store_c_quizzes(self, new_c_quizzes, for_train=True):
383         if for_train:
384             self.train_c_quizzes.append(new_c_quizzes)
385         else:
386             self.test_c_quizzes.append(new_c_quizzes)
387
388     def compute_correctness(
389         self,
390         c_quizzes,
391         models_for_validation,
392         bidirectional_validation=False,
393         deterministic_validation=True,
394     ):
395         if bidirectional_validation:
396             backward_c_quizzes = self.forward_to_backward(c_quizzes)
397
398         seq_logproba = torch.zeros(
399             c_quizzes.size(0),
400             max([m.id for m in models_for_validation]) + 1,
401             device=self.device,
402         )
403
404         nb_correct = 0
405
406         for model in models_for_validation:
407             result = c_quizzes.clone()
408
409             seq_logproba[...] = 0.0
410
411             ar_mask = self.make_ar_mask(result)
412
413             masked_inplace_autoregression(
414                 model=model,
415                 batch_size=self.batch_size,
416                 input=result,
417                 ar_mask=ar_mask,
418                 seq_logproba=seq_logproba[:, model.id],
419                 temperature=1.0,
420                 deterministic_synthesis=deterministic_validation,
421                 # progress_bar_desc="solving c_quizzes",
422                 device=self.device,
423             )
424
425             correct = (c_quizzes == result).long().min(dim=-1).values
426
427             if bidirectional_validation:
428                 backward_result = backward_c_quizzes.clone()
429
430                 ar_mask = self.make_ar_mask(backward_result)
431
432                 masked_inplace_autoregression(
433                     model=model,
434                     batch_size=self.batch_size,
435                     input=backward_result,
436                     ar_mask=ar_mask,
437                     seq_logproba=seq_logproba[:, model.id],
438                     temperature=1.0,
439                     deterministic_synthesis=deterministic_validation,
440                     # progress_bar_desc="solving backward c_quizzes",
441                     device=self.device,
442                 )
443
444                 backward_correct = (
445                     (backward_c_quizzes == backward_result).long().min(dim=-1).values
446                 )
447
448                 correct *= backward_correct
449
450             # endif
451
452             nb_correct += correct
453
454         return nb_correct, seq_logproba
455
456     ###############################################################
457
458     def generate_quizzes(self, nb, model_for_generation, temperature=1.0):
459         c_quizzes = torch.empty(
460             nb, self.train_w_quizzes.size(1), device=self.device, dtype=torch.int64
461         )
462
463         seq_logproba = torch.zeros(nb, device=self.device)
464
465         # First, we generate the answer at high temperature
466
467         c_quizzes[:, 0] = self.token_backward
468         c_quizzes[:, 1 + self.answer_len] = self.token_backward
469
470         masked_inplace_autoregression(
471             model=model_for_generation,
472             batch_size=self.batch_size,
473             input=c_quizzes,
474             ar_mask=self.make_ar_mask(c_quizzes, first=True),
475             seq_logproba=seq_logproba,
476             temperature=temperature,
477             deterministic_synthesis=False,
478             device=self.device,
479         )
480
481         # Then, we generate the prompt at low temperature
482
483         masked_inplace_autoregression(
484             model=model_for_generation,
485             batch_size=self.batch_size,
486             input=c_quizzes,
487             ar_mask=self.make_ar_mask(c_quizzes),
488             seq_logproba=seq_logproba,
489             temperature=1 / temperature,
490             deterministic_synthesis=False,
491             device=self.device,
492         )
493
494         # Then we return the quizz, and re-generate the response, now
495         # at low temperature
496
497         c_quizzes = self.reverse_time(c_quizzes)
498
499         masked_inplace_autoregression(
500             model=model_for_generation,
501             batch_size=self.batch_size,
502             input=c_quizzes,
503             ar_mask=self.make_ar_mask(c_quizzes),
504             seq_logproba=seq_logproba,
505             temperature=1 / temperature,
506             deterministic_synthesis=False,
507             device=self.device,
508         )
509
510         return c_quizzes