632c9ae5875b4db2ea058375cd9f95e5744bf860
[culture.git] / quizz_machine.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 import math, os, tqdm, warnings
9
10 import torch, torchvision
11
12 from torch import nn
13 from torch.nn import functional as F
14
15 import mygpt
16 from mygpt import BracketedSequence
17
18 ######################################################################
19
20 # ar_mask is a tensor with 0s and 1s, of same shape as input, with
21 # 1s where tokens should be generated. The others are kept
22 # unchanged.
23
24
25 def one_batch_masked_inplace_autoregression(
26     model,
27     input,
28     ar_mask,
29     seq_logproba,
30     temperature=1.0,
31     deterministic_synthesis=False,
32 ):
33     to_generate = (ar_mask.sum(0) > 0).nonzero()
34
35     if to_generate.min() > 0:
36         model(
37             BracketedSequence(input, 0, to_generate.min())
38         )  # Needed to initialize the model's cache
39     for s in range(to_generate.min(), to_generate.max() + 1):
40         output = model(BracketedSequence(input, s, 1)).x
41
42         logits = output[:, s]
43
44         logits = (logits / temperature).log_softmax(dim=-1)
45
46         if deterministic_synthesis:
47             t_next = logits.argmax(-1)
48         else:
49             dist = torch.distributions.categorical.Categorical(logits=logits)
50             t_next = dist.sample()
51
52         all_n = torch.arange(t_next.size(0))
53         seq_logproba += logits[all_n, t_next].sum(dim=-1)
54
55         input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
56
57
58 def masked_inplace_autoregression(
59     model,
60     batch_size,
61     input,
62     ar_mask,
63     seq_logproba,
64     temperature,
65     deterministic_synthesis,
66     forbidden_tokens=None,
67     logit_biases=None,
68     progress_bar_desc=None,
69     device=torch.device("cpu"),
70 ):
71     assert input.size() == ar_mask.size()
72
73     batches = zip(
74         input.split(batch_size),
75         ar_mask.split(batch_size),
76         seq_logproba.split(batch_size),
77     )
78
79     if progress_bar_desc is not None:
80         batches = tqdm.tqdm(
81             batches,
82             dynamic_ncols=True,
83             desc=progress_bar_desc,
84             total=(input.size(0) + batch_size - 1) // batch_size,
85         )
86
87     with torch.autograd.no_grad():
88         t = model.training
89         model.eval()
90
91         for input, ar_mask, seq_logproba in batches:
92             one_batch_masked_inplace_autoregression(
93                 model=model,
94                 input=input,
95                 ar_mask=ar_mask,
96                 seq_logproba=seq_logproba,
97                 temperature=temperature,
98                 deterministic_synthesis=deterministic_synthesis,
99             )
100
101         model.train(t)
102
103
104 ######################################################################
105
106
107 class QuizzMachine:
108     def indices_forward_and_backward(self, quizzes):
109         i_forward = quizzes[:, 0] == self.token_forward
110         j_forward = quizzes[:, 1 + self.prompt_len] == self.token_forward
111         i_backward = quizzes[:, 0] == self.token_backward
112         j_backward = quizzes[:, 1 + self.answer_len] == self.token_backward
113         assert torch.logical_or(
114             torch.logical_and(i_forward, j_forward),
115             torch.logical_and(i_backward, j_backward),
116         ).all()
117         return i_forward, i_backward
118
119     def reverse_time(self, quizzes):
120         i_forward, i_backward = self.indices_forward_and_backward(quizzes)
121
122         forward_to_backward = torch.cat(
123             [
124                 quizzes[:, 0:1],
125                 quizzes[:, 2 + self.prompt_len : 2 + self.prompt_len + self.answer_len],
126                 quizzes[:, 1 + self.prompt_len : 1 + self.prompt_len + 1],
127                 quizzes[:, 1 : 1 + self.prompt_len],
128             ],
129             dim=1,
130         )
131
132         forward_to_backward[:, 0] = self.token_backward
133         forward_to_backward[:, 1 + self.answer_len] = self.token_backward
134
135         backward_to_forward = torch.cat(
136             [
137                 quizzes[:, 0:1],
138                 quizzes[:, 2 + self.answer_len :],
139                 quizzes[:, 1 + self.answer_len : 2 + self.answer_len],
140                 quizzes[:, 1 : 1 + self.answer_len],
141             ],
142             dim=1,
143         )
144
145         backward_to_forward[:, 0] = self.token_forward
146         backward_to_forward[:, 1 + self.prompt_len] = self.token_forward
147
148         m = i_forward.long()[:, None]
149
150         return m * forward_to_backward + (1 - m) * backward_to_forward
151
152     def make_ar_mask(self, quizzes, first=False):
153         i_forward, i_backward = self.indices_forward_and_backward(quizzes)
154
155         t = torch.arange(quizzes.size(1), device=quizzes.device)
156
157         if first:
158             m_forward = (t >= 1).long() * (t < 1 + self.prompt_len).long()
159             m_backward = (t >= 1).long() * (t < 1 + self.answer_len).long()
160         else:
161             m_forward = (t >= 2 + self.prompt_len).long()
162             m_backward = (t >= 2 + self.answer_len).long()
163
164         m = i_forward.long()[:, None]
165
166         return m * m_forward + (1 - m) * m_backward
167
168     def generate_token_sequences(self, nb):
169         prompts, answers = self.problem.generate_prompts_and_answers(nb)
170
171         if self.prompt_len is None:
172             self.prompt_len = prompts.size(1)
173
174         if self.answer_len is None:
175             self.answer_len = answers.size(1)
176
177         assert prompts.size(1) == self.prompt_len and answers.size(1) == self.answer_len
178
179         result = []
180
181         for prompt, answer in zip(prompts, answers):
182             if torch.rand(1) < 0.5:
183                 a = [
184                     torch.tensor([self.token_forward]),
185                     prompt,
186                     torch.tensor([self.token_forward]),
187                     answer,
188                 ]
189             else:
190                 a = [
191                     torch.tensor([self.token_backward]),
192                     answer,
193                     torch.tensor([self.token_backward]),
194                     prompt,
195                 ]
196
197             result.append(torch.cat(a, dim=0)[None, :])
198
199         return torch.cat(result, dim=0)
200
201     def __init__(
202         self,
203         problem,
204         nb_train_samples,
205         nb_test_samples,
206         back_accuracy,
207         batch_size,
208         result_dir,
209         logger,
210         device=torch.device("cpu"),
211     ):
212         super().__init__()
213
214         v = problem.nb_token_values()
215         self.token_forward = v
216         self.token_backward = v + 1
217         self.nb_token_values = v + 2
218
219         self.problem = problem
220         self.back_accuracy = back_accuracy
221         self.batch_size = batch_size
222         self.device = device
223         self.logger = logger
224         self.prompt_len = None
225         self.answer_len = None
226
227         self.train_w_quizzes = self.generate_token_sequences(nb_train_samples).to(
228             device
229         )
230
231         self.test_w_quizzes = self.generate_token_sequences(nb_test_samples).to(device)
232
233         self.train_c_quizzes = []
234         self.test_c_quizzes = []
235
236         if result_dir is not None:
237             self.save_quizzes(
238                 result_dir,
239                 "culture_w_quizzes",
240                 self.train_w_quizzes[:72],
241                 show_to_be_predicted=True,
242             )
243
244     def save_quizzes(
245         self,
246         result_dir,
247         filename_prefix,
248         quizzes,
249         show_to_be_predicted=False,
250         mistakes=None,
251     ):
252         quizzes = quizzes.clone()
253         forward = quizzes[quizzes[:, 0] == self.token_forward]
254         ib = quizzes[:, 0] == self.token_backward
255         backward = quizzes[ib]
256         assert forward.size(0) + backward.size(0) == quizzes.size(0)
257         quizzes[ib] = self.reverse_time(quizzes[ib])
258
259         if show_to_be_predicted:
260             predicted_prompts = ib.long()
261             predicted_answers = 1 - predicted_prompts
262             if mistakes is not None:
263                 # 0/-1/+1 ~ not-to-predict / predicted wrong / predicted correct
264                 predicted_prompts *= mistakes
265                 predicted_answers *= mistakes
266             else:
267                 # 0/2 ~ not-to-predict / to predict
268                 predicted_prompts *= 2
269                 predicted_answers *= 2
270         else:
271             predicted_prompts = None
272             predicted_answers = None
273
274         self.problem.save_quizzes(
275             result_dir,
276             filename_prefix,
277             quizzes[:, 1 : 1 + self.prompt_len],
278             quizzes[:, 2 + self.prompt_len :],
279             predicted_prompts,
280             predicted_answers,
281         )
282
283     def batches(self, split="train", desc=None):
284         assert split in {"train", "test"}
285         if split == "train":
286             w_quizzes = self.train_w_quizzes
287             c_quizzes = self.train_c_quizzes
288         else:
289             w_quizzes = self.test_w_quizzes
290             c_quizzes = self.test_c_quizzes
291
292         if len(c_quizzes) > 0:
293             c_quizzes = torch.cat(c_quizzes, dim=0)
294             if c_quizzes.size(0) > w_quizzes.size(0) // 2:
295                 i = torch.randperm(c_quizzes.size(0))[: w_quizzes.size(0) // 2]
296                 c_quizzes = c_quizzes[i]
297
298             i = torch.randperm(w_quizzes.size(0))[
299                 : w_quizzes.size(0) - c_quizzes.size(0)
300             ]
301             w_quizzes = w_quizzes[i]
302
303             self.nb_batch_w_quizzes = w_quizzes.size(0)
304             self.nb_batch_c_quizzes = c_quizzes.size(0)
305
306             input = torch.cat([w_quizzes, c_quizzes], dim=0)
307         else:
308             input = w_quizzes
309             self.nb_batch_w_quizzes = w_quizzes.size(0)
310             self.nb_batch_c_quizzes = 0
311
312         # Shuffle
313         input = input[torch.randperm(input.size(0))]
314
315         if desc is None:
316             desc = f"epoch-{split}"
317         for batch in tqdm.tqdm(
318             input.split(self.batch_size), dynamic_ncols=True, desc=desc
319         ):
320             yield batch
321
322     def vocabulary_size(self):
323         return self.nb_token_values
324
325     def produce_results(
326         self, n_epoch, model, result_dir, deterministic_synthesis, nmax=1000
327     ):
328         def compute_accuracy(input):
329             ar_mask = self.make_ar_mask(input)
330             result = input.clone() * (1 - ar_mask)
331             seq_logproba = torch.empty(input.size(0), device=self.device)
332
333             masked_inplace_autoregression(
334                 model=model,
335                 batch_size=self.batch_size,
336                 input=result,
337                 ar_mask=ar_mask,
338                 seq_logproba=seq_logproba,
339                 temperature=1.0,
340                 deterministic_synthesis=deterministic_synthesis,
341                 progress_bar_desc=None,
342                 device=self.device,
343             )
344
345             if self.back_accuracy:
346                 # If back_accuracy is True, we compute the accuracy on
347                 # the backward quizzes not by counting how many time
348                 # the real prompt A is equal to the reconstructed
349                 # prompt A*, but how many time the answers B* computed
350                 # from A* is equal to the correct answer. So we look
351                 # for the accuracy of A->B*=B for the forward, but for
352                 # the backward we look at B->A*->B*=B instead of B->A*=A
353
354                 n_forward = input[:, 0] == self.token_forward
355                 nb_total = input[n_forward].size(0)
356                 nb_correct = (
357                     (input[n_forward] == result[n_forward])
358                     .long()
359                     .min(dim=1)
360                     .values.sum()
361                     .item()
362                 )
363
364                 n_backward = input[:, 0] == self.token_backward
365                 back_input = self.reverse_time(result[n_backward])
366
367                 if back_input.size(0) > 0:
368                     back_input[:, 2 + self.prompt_len :] = input[
369                         n_backward, 1 : 1 + self.answer_len
370                     ]
371                     back_nb_total, back_nb_correct = compute_accuracy(back_input)
372
373                     self.logger(
374                         f"accuracy {n_epoch=} {model.id=} {nb_correct} / {nb_total}"
375                     )
376                     self.logger(
377                         f"back_accuracy {n_epoch=} {model.id=} {back_nb_correct} / {back_nb_total}"
378                     )
379
380                     nb_total += back_nb_total
381                     nb_correct += back_nb_correct
382                 else:
383                     self.logger(
384                         f"accuracy {n_epoch=} {model.id=} {nb_correct} / {nb_total}"
385                     )
386
387             else:
388                 nb_total = input.size(0)
389                 nb_correct = (input == result).long().min(dim=1).values.sum()
390
391             return nb_total, nb_correct
392
393         train_nb_total, train_nb_correct = compute_accuracy(self.train_w_quizzes[:nmax])
394
395         self.logger(
396             f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
397         )
398
399         test_nb_total, test_nb_correct = compute_accuracy(self.test_w_quizzes[:nmax])
400
401         self.logger(
402             f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
403         )
404
405         main_test_accuracy = test_nb_correct / test_nb_total
406         self.logger(f"main_test_accuracy {n_epoch} {main_test_accuracy}")
407
408         ##############################
409
410         input = self.test_w_quizzes[:96]
411         ar_mask = self.make_ar_mask(input)
412         result = input.clone() * (1 - ar_mask)
413         seq_logproba = torch.empty(input.size(0), device=self.device)
414
415         masked_inplace_autoregression(
416             model=model,
417             batch_size=self.batch_size,
418             input=result,
419             ar_mask=ar_mask,
420             seq_logproba=seq_logproba,
421             temperature=1.0,
422             deterministic_synthesis=deterministic_synthesis,
423             progress_bar_desc=None,
424             device=self.device,
425         )
426
427         mistakes = (input == result).flatten(1).long().min(dim=1).values * 2 - 1
428
429         self.save_quizzes(
430             result_dir,
431             f"culture_prediction_{n_epoch:04d}_{model.id:02d}",
432             quizzes=result[:72],
433             show_to_be_predicted=True,
434             mistakes=mistakes[:72],
435         )
436
437         return main_test_accuracy
438
439     def renew_w_quizzes(self, nb, for_train=True):
440         input = self.train_w_quizzes if for_train else self.test_w_quizzes
441         nb = min(nb, input.size(0))
442         input[:-nb] = input[nb:].clone()
443         input[-nb:] = self.generate_token_sequences(nb).to(self.device)
444
445     def store_c_quizzes(self, new_c_quizzes, for_train=True):
446         if for_train:
447             self.train_c_quizzes.append(new_c_quizzes)
448         else:
449             self.test_c_quizzes.append(new_c_quizzes)
450
451     def compute_correctness(
452         self,
453         c_quizzes,
454         models_for_validation,
455         bidirectional_validation=False,
456         deterministic_validation=True,
457     ):
458         if bidirectional_validation:
459             backward_c_quizzes = self.forward_to_backward(c_quizzes)
460
461         seq_logproba = torch.zeros(
462             c_quizzes.size(0),
463             max([m.id for m in models_for_validation]) + 1,
464             device=self.device,
465         )
466
467         nb_correct = 0
468
469         for model in models_for_validation:
470             result = c_quizzes.clone()
471
472             seq_logproba[...] = 0.0
473
474             ar_mask = self.make_ar_mask(result)
475
476             masked_inplace_autoregression(
477                 model=model,
478                 batch_size=self.batch_size,
479                 input=result,
480                 ar_mask=ar_mask,
481                 seq_logproba=seq_logproba[:, model.id],
482                 temperature=1.0,
483                 deterministic_synthesis=deterministic_validation,
484                 # progress_bar_desc="solving c_quizzes",
485                 device=self.device,
486             )
487
488             correct = (c_quizzes == result).long().min(dim=-1).values
489
490             if bidirectional_validation:
491                 backward_result = backward_c_quizzes.clone()
492
493                 ar_mask = self.make_ar_mask(backward_result)
494
495                 masked_inplace_autoregression(
496                     model=model,
497                     batch_size=self.batch_size,
498                     input=backward_result,
499                     ar_mask=ar_mask,
500                     seq_logproba=seq_logproba[:, model.id],
501                     temperature=1.0,
502                     deterministic_synthesis=deterministic_validation,
503                     # progress_bar_desc="solving backward c_quizzes",
504                     device=self.device,
505                 )
506
507                 backward_correct = (
508                     (backward_c_quizzes == backward_result).long().min(dim=-1).values
509                 )
510
511                 correct *= backward_correct
512
513             # endif
514
515             nb_correct += correct
516
517         return nb_correct, seq_logproba
518
519     ###############################################################
520
521     def generate_quizzes(self, nb, model_for_generation, temperature=1.0):
522         c_quizzes = torch.empty(
523             nb, self.train_w_quizzes.size(1), device=self.device, dtype=torch.int64
524         )
525
526         seq_logproba = torch.zeros(nb, device=self.device)
527
528         # First, we generate the answer at high temperature
529
530         c_quizzes[:, 0] = self.token_backward
531         c_quizzes[:, 1 + self.answer_len] = self.token_backward
532
533         masked_inplace_autoregression(
534             model=model_for_generation,
535             batch_size=self.batch_size,
536             input=c_quizzes,
537             ar_mask=self.make_ar_mask(c_quizzes, first=True),
538             seq_logproba=seq_logproba,
539             temperature=temperature,
540             deterministic_synthesis=False,
541             device=self.device,
542         )
543
544         # Then, we generate the prompt at low temperature
545
546         masked_inplace_autoregression(
547             model=model_for_generation,
548             batch_size=self.batch_size,
549             input=c_quizzes,
550             ar_mask=self.make_ar_mask(c_quizzes),
551             seq_logproba=seq_logproba,
552             temperature=1 / temperature,
553             deterministic_synthesis=False,
554             device=self.device,
555         )
556
557         # Then we return the quizz, and re-generate the response, now
558         # at low temperature
559
560         c_quizzes = self.reverse_time(c_quizzes)
561
562         masked_inplace_autoregression(
563             model=model_for_generation,
564             batch_size=self.batch_size,
565             input=c_quizzes,
566             ar_mask=self.make_ar_mask(c_quizzes),
567             seq_logproba=seq_logproba,
568             temperature=1 / temperature,
569             deterministic_synthesis=False,
570             device=self.device,
571         )
572
573         return c_quizzes