62ae8ce94af2b09b909a8182ad3a4a0b4709a1c1
[culture.git] / quizz_machine.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 import math, os, tqdm, warnings
9
10 import torch, torchvision
11
12 from torch import nn
13 from torch.nn import functional as F
14
15 import mygpt
16 from mygpt import BracketedSequence
17
18 ######################################################################
19
20 # ar_mask is a tensor with 0s and 1s, of same shape as input, with
21 # 1s where tokens should be generated. The others are kept
22 # unchanged.
23
24
25 def one_batch_masked_inplace_autoregression(
26     model,
27     input,
28     ar_mask,
29     seq_logproba,
30     temperature=1.0,
31     deterministic_synthesis=False,
32 ):
33     to_generate = (ar_mask.sum(0) > 0).nonzero()
34
35     if to_generate.min() > 0:
36         model(
37             BracketedSequence(input, 0, to_generate.min())
38         )  # Needed to initialize the model's cache
39     for s in range(to_generate.min(), to_generate.max() + 1):
40         output = model(BracketedSequence(input, s, 1)).x
41
42         logits = output[:, s]
43
44         logits = (logits / temperature).log_softmax(dim=-1)
45
46         if deterministic_synthesis:
47             t_next = logits.argmax(-1)
48         else:
49             dist = torch.distributions.categorical.Categorical(logits=logits)
50             t_next = dist.sample()
51
52         all_n = torch.arange(t_next.size(0))
53         seq_logproba += logits[all_n, t_next].sum(dim=-1)
54
55         input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
56
57
58 def masked_inplace_autoregression(
59     model,
60     batch_size,
61     input,
62     ar_mask,
63     seq_logproba,
64     temperature,
65     deterministic_synthesis,
66     forbidden_tokens=None,
67     logit_biases=None,
68     progress_bar_desc=None,
69     device=torch.device("cpu"),
70 ):
71     assert input.size() == ar_mask.size()
72
73     batches = zip(
74         input.split(batch_size),
75         ar_mask.split(batch_size),
76         seq_logproba.split(batch_size),
77     )
78
79     if progress_bar_desc is not None:
80         batches = tqdm.tqdm(
81             batches,
82             dynamic_ncols=True,
83             desc=progress_bar_desc,
84             total=(input.size(0) + batch_size - 1) // batch_size,
85         )
86
87     with torch.autograd.no_grad():
88         t = model.training
89         model.eval()
90
91         for input, ar_mask, seq_logproba in batches:
92             one_batch_masked_inplace_autoregression(
93                 model=model,
94                 input=input,
95                 ar_mask=ar_mask,
96                 seq_logproba=seq_logproba,
97                 temperature=temperature,
98                 deterministic_synthesis=deterministic_synthesis,
99             )
100
101         model.train(t)
102
103
104 ######################################################################
105
106
107 class QuizzMachine:
108     def indices_forward_and_backward(self, quizzes):
109         i_forward = quizzes[:, 0] == self.token_forward
110         j_forward = quizzes[:, 1 + self.prompt_len] == self.token_forward
111         i_backward = quizzes[:, 0] == self.token_backward
112         j_backward = quizzes[:, 1 + self.answer_len] == self.token_backward
113         assert torch.logical_or(
114             torch.logical_and(i_forward, j_forward),
115             torch.logical_and(i_backward, j_backward),
116         ).all()
117         return i_forward, i_backward
118
119     def reverse_time(self, quizzes):
120         i_forward, i_backward = self.indices_forward_and_backward(quizzes)
121
122         forward_to_backward = torch.cat(
123             [
124                 quizzes[:, 0:1],
125                 quizzes[:, 2 + self.prompt_len : 2 + self.prompt_len + self.answer_len],
126                 quizzes[:, 1 + self.prompt_len : 1 + self.prompt_len + 1],
127                 quizzes[:, 1 : 1 + self.prompt_len],
128             ],
129             dim=1,
130         )
131
132         forward_to_backward[:, 0] = self.token_backward
133         forward_to_backward[:, 1 + self.answer_len] = self.token_backward
134
135         backward_to_forward = torch.cat(
136             [
137                 quizzes[:, 0:1],
138                 quizzes[:, 2 + self.answer_len :],
139                 quizzes[:, 1 + self.answer_len : 2 + self.answer_len],
140                 quizzes[:, 1 : 1 + self.answer_len],
141             ],
142             dim=1,
143         )
144
145         backward_to_forward[:, 0] = self.token_forward
146         backward_to_forward[:, 1 + self.prompt_len] = self.token_forward
147
148         m = i_forward.long()[:, None]
149
150         return m * forward_to_backward + (1 - m) * backward_to_forward
151
152     def make_ar_mask(self, quizzes, first=False):
153         i_forward, i_backward = self.indices_forward_and_backward(quizzes)
154
155         t = torch.arange(quizzes.size(1), device=quizzes.device)
156
157         if first:
158             m_forward = (t >= 1).long() * (t < 1 + self.prompt_len).long()
159             m_backward = (t >= 1).long() * (t < 1 + self.answer_len).long()
160         else:
161             m_forward = (t >= 2 + self.prompt_len).long()
162             m_backward = (t >= 2 + self.answer_len).long()
163
164         m = i_forward.long()[:, None]
165
166         return m * m_forward + (1 - m) * m_backward
167
168     def generate_token_sequences(self, nb):
169         prompts, answers = self.problem.generate_prompts_and_answers(nb)
170
171         if self.prompt_len is None:
172             self.prompt_len = prompts.size(1)
173
174         if self.answer_len is None:
175             self.answer_len = answers.size(1)
176
177         assert prompts.size(1) == self.prompt_len and answers.size(1) == self.answer_len
178
179         result = []
180
181         for prompt, answer in zip(prompts, answers):
182             if torch.rand(1) < 0.5:
183                 a = [
184                     torch.tensor([self.token_forward]),
185                     prompt,
186                     torch.tensor([self.token_forward]),
187                     answer,
188                 ]
189             else:
190                 a = [
191                     torch.tensor([self.token_backward]),
192                     answer,
193                     torch.tensor([self.token_backward]),
194                     prompt,
195                 ]
196
197             result.append(torch.cat(a, dim=0)[None, :])
198
199         return torch.cat(result, dim=0)
200
201     def __init__(
202         self,
203         problem,
204         nb_train_samples,
205         nb_test_samples,
206         back_accuracy,
207         batch_size,
208         result_dir,
209         logger,
210         device=torch.device("cpu"),
211     ):
212         super().__init__()
213
214         v = problem.nb_token_values()
215         self.token_forward = v
216         self.token_backward = v + 1
217         self.nb_token_values = v + 2
218
219         self.problem = problem
220         self.back_accuracy = back_accuracy
221         self.batch_size = batch_size
222         self.device = device
223         self.logger = logger
224         self.prompt_len = None
225         self.answer_len = None
226
227         self.train_w_quizzes = self.generate_token_sequences(nb_train_samples).to(
228             device
229         )
230
231         self.test_w_quizzes = self.generate_token_sequences(nb_test_samples).to(device)
232
233         self.train_c_quizzes = []
234         self.test_c_quizzes = []
235
236         if result_dir is not None:
237             self.save_quizzes(
238                 result_dir,
239                 "culture_w_quizzes",
240                 self.train_w_quizzes[:72],
241                 prediction=True,
242             )
243
244     def save_quizzes(self, result_dir, filename_prefix, quizzes, prediction=False):
245         quizzes = quizzes.clone()
246         forward = quizzes[quizzes[:, 0] == self.token_forward]
247         ib = quizzes[:, 0] == self.token_backward
248         backward = quizzes[ib]
249         assert forward.size(0) + backward.size(0) == quizzes.size(0)
250         quizzes[ib] = self.reverse_time(quizzes[ib])
251
252         if prediction:
253             predicted_prompts = ib
254             predicted_answers = torch.logical_not(ib)
255         else:
256             predicted_prompts = None
257             predicted_answers = None
258
259         self.problem.save_quizzes(
260             result_dir,
261             filename_prefix,
262             quizzes[:, 1 : 1 + self.prompt_len],
263             quizzes[:, 2 + self.prompt_len :],
264             predicted_prompts,
265             predicted_answers,
266         )
267
268     def batches(self, split="train", desc=None):
269         assert split in {"train", "test"}
270         if split == "train":
271             w_quizzes = self.train_w_quizzes
272             c_quizzes = self.train_c_quizzes
273         else:
274             w_quizzes = self.test_w_quizzes
275             c_quizzes = self.test_c_quizzes
276
277         if len(c_quizzes) > 0:
278             c_quizzes = torch.cat(c_quizzes, dim=0)
279             if c_quizzes.size(0) > w_quizzes.size(0) // 2:
280                 i = torch.randperm(c_quizzes.size(0))[: w_quizzes.size(0) // 2]
281                 c_quizzes = c_quizzes[i]
282
283             i = torch.randperm(w_quizzes.size(0))[
284                 : w_quizzes.size(0) - c_quizzes.size(0)
285             ]
286             w_quizzes = w_quizzes[i]
287
288             self.nb_batch_w_quizzes = w_quizzes.size(0)
289             self.nb_batch_c_quizzes = c_quizzes.size(0)
290
291             input = torch.cat([w_quizzes, c_quizzes], dim=0)
292         else:
293             input = w_quizzes
294             self.nb_batch_w_quizzes = w_quizzes.size(0)
295             self.nb_batch_c_quizzes = 0
296
297         # Shuffle
298         input = input[torch.randperm(input.size(0))]
299
300         if desc is None:
301             desc = f"epoch-{split}"
302         for batch in tqdm.tqdm(
303             input.split(self.batch_size), dynamic_ncols=True, desc=desc
304         ):
305             yield batch
306
307     def vocabulary_size(self):
308         return self.nb_token_values
309
310     def produce_results(
311         self, n_epoch, model, result_dir, deterministic_synthesis, nmax=1000
312     ):
313         def compute_accuracy(input):
314             ar_mask = self.make_ar_mask(input)
315             result = input.clone() * (1 - ar_mask)
316             seq_logproba = torch.empty(input.size(0), device=self.device)
317
318             masked_inplace_autoregression(
319                 model=model,
320                 batch_size=self.batch_size,
321                 input=result,
322                 ar_mask=ar_mask,
323                 seq_logproba=seq_logproba,
324                 temperature=1.0,
325                 deterministic_synthesis=deterministic_synthesis,
326                 progress_bar_desc=None,
327                 device=self.device,
328             )
329
330             if self.back_accuracy:
331                 # If back_accuracy is True, we compute the accuracy on
332                 # the backward quizzes not by counting how many time
333                 # the real prompt A is equal to the reconstructed
334                 # prompt A*, but how many time the answers B* computed
335                 # from A* is equal to the correct answer. So we look
336                 # for the accuracy of A->B*=B for the forward, but for
337                 # the backward we look at B->A*->B*=B instead of B->A*=A
338
339                 n_forward = input[:, 0] == self.token_forward
340                 nb_total = input[n_forward].size(0)
341                 nb_correct = (
342                     (input[n_forward] == result[n_forward])
343                     .long()
344                     .min(dim=1)
345                     .values.sum()
346                     .item()
347                 )
348
349                 n_backward = input[:, 0] == self.token_backward
350                 back_input = self.reverse_time(result[n_backward])
351
352                 if back_input.size(0) > 0:
353                     back_input[:, 2 + self.prompt_len :] = input[
354                         n_backward, 1 : 1 + self.answer_len
355                     ]
356                     back_nb_total, back_nb_correct = compute_accuracy(back_input)
357
358                     self.logger(
359                         f"accuracy {n_epoch=} {model.id=} {nb_correct} / {nb_total}"
360                     )
361                     self.logger(
362                         f"back_accuracy {n_epoch=} {model.id=} {back_nb_correct} / {back_nb_total}"
363                     )
364
365                     nb_total += back_nb_total
366                     nb_correct += back_nb_correct
367                 else:
368                     self.logger(
369                         f"accuracy {n_epoch=} {model.id=} {nb_correct} / {nb_total}"
370                     )
371
372             else:
373                 nb_total = input.size(0)
374                 nb_correct = (input == result).long().min(dim=1).values.sum()
375
376             return nb_total, nb_correct
377
378         train_nb_total, train_nb_correct = compute_accuracy(self.train_w_quizzes[:nmax])
379
380         self.logger(
381             f"accuracy_train {n_epoch} nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
382         )
383
384         test_nb_total, test_nb_correct = compute_accuracy(self.test_w_quizzes[:nmax])
385
386         self.logger(
387             f"accuracy_test {n_epoch} nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
388         )
389
390         main_test_accuracy = test_nb_correct / test_nb_total
391         self.logger(f"main_test_accuracy {n_epoch} {main_test_accuracy}")
392
393         ##############################
394
395         input = self.test_w_quizzes[:96]
396         ar_mask = self.make_ar_mask(input)
397         result = input.clone() * (1 - ar_mask)
398         seq_logproba = torch.empty(input.size(0), device=self.device)
399
400         masked_inplace_autoregression(
401             model=model,
402             batch_size=self.batch_size,
403             input=result,
404             ar_mask=ar_mask,
405             seq_logproba=seq_logproba,
406             temperature=1.0,
407             deterministic_synthesis=deterministic_synthesis,
408             progress_bar_desc=None,
409             device=self.device,
410         )
411
412         self.save_quizzes(
413             result_dir,
414             f"culture_prediction_{n_epoch:04d}_{model.id:02d}",
415             quizzes=result[:72],
416             prediction=True,
417         )
418
419         return main_test_accuracy
420
421     def renew_w_quizzes(self, nb, for_train=True):
422         input = self.train_w_quizzes if for_train else self.test_w_quizzes
423         nb = min(nb, input.size(0))
424         input[:-nb] = input[nb:].clone()
425         input[-nb:] = self.generate_token_sequences(nb).to(self.device)
426
427     def store_c_quizzes(self, new_c_quizzes, for_train=True):
428         if for_train:
429             self.train_c_quizzes.append(new_c_quizzes)
430         else:
431             self.test_c_quizzes.append(new_c_quizzes)
432
433     def compute_correctness(
434         self,
435         c_quizzes,
436         models_for_validation,
437         bidirectional_validation=False,
438         deterministic_validation=True,
439     ):
440         if bidirectional_validation:
441             backward_c_quizzes = self.forward_to_backward(c_quizzes)
442
443         seq_logproba = torch.zeros(
444             c_quizzes.size(0),
445             max([m.id for m in models_for_validation]) + 1,
446             device=self.device,
447         )
448
449         nb_correct = 0
450
451         for model in models_for_validation:
452             result = c_quizzes.clone()
453
454             seq_logproba[...] = 0.0
455
456             ar_mask = self.make_ar_mask(result)
457
458             masked_inplace_autoregression(
459                 model=model,
460                 batch_size=self.batch_size,
461                 input=result,
462                 ar_mask=ar_mask,
463                 seq_logproba=seq_logproba[:, model.id],
464                 temperature=1.0,
465                 deterministic_synthesis=deterministic_validation,
466                 # progress_bar_desc="solving c_quizzes",
467                 device=self.device,
468             )
469
470             correct = (c_quizzes == result).long().min(dim=-1).values
471
472             if bidirectional_validation:
473                 backward_result = backward_c_quizzes.clone()
474
475                 ar_mask = self.make_ar_mask(backward_result)
476
477                 masked_inplace_autoregression(
478                     model=model,
479                     batch_size=self.batch_size,
480                     input=backward_result,
481                     ar_mask=ar_mask,
482                     seq_logproba=seq_logproba[:, model.id],
483                     temperature=1.0,
484                     deterministic_synthesis=deterministic_validation,
485                     # progress_bar_desc="solving backward c_quizzes",
486                     device=self.device,
487                 )
488
489                 backward_correct = (
490                     (backward_c_quizzes == backward_result).long().min(dim=-1).values
491                 )
492
493                 correct *= backward_correct
494
495             # endif
496
497             nb_correct += correct
498
499         return nb_correct, seq_logproba
500
501     ###############################################################
502
503     def generate_quizzes(self, nb, model_for_generation, temperature=1.0):
504         c_quizzes = torch.empty(
505             nb, self.train_w_quizzes.size(1), device=self.device, dtype=torch.int64
506         )
507
508         seq_logproba = torch.zeros(nb, device=self.device)
509
510         # First, we generate the answer at high temperature
511
512         c_quizzes[:, 0] = self.token_backward
513         c_quizzes[:, 1 + self.answer_len] = self.token_backward
514
515         masked_inplace_autoregression(
516             model=model_for_generation,
517             batch_size=self.batch_size,
518             input=c_quizzes,
519             ar_mask=self.make_ar_mask(c_quizzes, first=True),
520             seq_logproba=seq_logproba,
521             temperature=temperature,
522             deterministic_synthesis=False,
523             device=self.device,
524         )
525
526         # Then, we generate the prompt at low temperature
527
528         masked_inplace_autoregression(
529             model=model_for_generation,
530             batch_size=self.batch_size,
531             input=c_quizzes,
532             ar_mask=self.make_ar_mask(c_quizzes),
533             seq_logproba=seq_logproba,
534             temperature=1 / temperature,
535             deterministic_synthesis=False,
536             device=self.device,
537         )
538
539         # Then we return the quizz, and re-generate the response, now
540         # at low temperature
541
542         c_quizzes = self.reverse_time(c_quizzes)
543
544         masked_inplace_autoregression(
545             model=model_for_generation,
546             batch_size=self.batch_size,
547             input=c_quizzes,
548             ar_mask=self.make_ar_mask(c_quizzes),
549             seq_logproba=seq_logproba,
550             temperature=1 / temperature,
551             deterministic_synthesis=False,
552             device=self.device,
553         )
554
555         return c_quizzes