8ab5696c8ae381fa419f15e097f926adad3faf93
[culture.git] / quiz_machine.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 import math, os, tqdm, warnings
9
10 import torch, torchvision
11
12 from torch import nn
13 from torch.nn import functional as F
14
15 import mygpt
16 from mygpt import BracketedSequence
17
18 import threading
19
20 ######################################################################
21
22 # ar_mask is a tensor with 0s and 1s, of same shape as input, with
23 # 1s where tokens should be generated. The others are kept
24 # unchanged.
25
26
27 def one_batch_masked_inplace_autoregression(
28     model,
29     input,
30     ar_mask,
31     seq_logproba,
32     temperature,
33     deterministic_synthesis,
34 ):
35     to_generate = (ar_mask.sum(0) > 0).nonzero()
36
37     if to_generate.min() > 0:
38         model(
39             BracketedSequence(input, 0, to_generate.min())
40         )  # Needed to initialize the model's cache
41     for s in range(to_generate.min(), to_generate.max() + 1):
42         output = model(BracketedSequence(input, s, 1)).x
43
44         logits = output[:, s]
45
46         logits = (logits / temperature).log_softmax(dim=-1)
47
48         if deterministic_synthesis:
49             t_next = logits.argmax(-1)
50         else:
51             dist = torch.distributions.categorical.Categorical(logits=logits)
52             t_next = dist.sample()
53
54         all_n = torch.arange(t_next.size(0))
55
56         seq_logproba += logits[all_n, t_next]
57
58         input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
59
60
61 def masked_inplace_autoregression(
62     model,
63     batch_size,
64     input,
65     ar_mask,
66     seq_logproba,
67     temperature,
68     deterministic_synthesis,
69     forbidden_tokens=None,
70     logit_biases=None,
71     progress_bar_desc=None,
72     device=torch.device("cpu"),
73 ):
74     assert input.size() == ar_mask.size()
75
76     batches = zip(
77         input.split(batch_size),
78         ar_mask.split(batch_size),
79         seq_logproba.split(batch_size),
80     )
81
82     if progress_bar_desc is not None:
83         batches = tqdm.tqdm(
84             batches,
85             dynamic_ncols=True,
86             desc=progress_bar_desc,
87             total=(input.size(0) + batch_size - 1) // batch_size,
88         )
89
90     with torch.autograd.no_grad():
91         t = model.training
92         model.eval()
93
94         for input, ar_mask, seq_logproba in batches:
95             one_batch_masked_inplace_autoregression(
96                 model=model,
97                 input=input,
98                 ar_mask=ar_mask,
99                 seq_logproba=seq_logproba,
100                 temperature=temperature,
101                 deterministic_synthesis=deterministic_synthesis,
102             )
103
104         model.train(t)
105
106
107 ######################################################################
108
109
110 class QuizMachine:
111     def indices_forward_and_backward(self, quizzes):
112         i_forward = quizzes[:, 0] == self.token_forward
113         j_forward = quizzes[:, 1 + self.prompt_len] == self.token_forward
114         i_backward = quizzes[:, 0] == self.token_backward
115         j_backward = quizzes[:, 1 + self.answer_len] == self.token_backward
116         assert torch.logical_or(
117             torch.logical_and(i_forward, j_forward),
118             torch.logical_and(i_backward, j_backward),
119         ).all()
120         return i_forward, i_backward
121
122     def non_trivial(self, quizzes):
123         quizzes = quizzes.clone()
124         n_forward = quizzes[quizzes[:, 0] == self.token_forward]
125         n_backward = quizzes[:, 0] == self.token_backward
126         backward = quizzes[n_backward]
127         quizzes[n_backward] = self.reverse_time(quizzes[n_backward])
128         return torch.logical_not(
129             self.problem.trivial_prompts_and_answers(
130                 quizzes[:, 1 : 1 + self.prompt_len],
131                 quizzes[:, 2 + self.prompt_len :],
132             )
133         )
134
135     def reverse_time(self, quizzes):
136         i_forward, i_backward = self.indices_forward_and_backward(quizzes)
137
138         forward_to_backward = torch.cat(
139             [
140                 quizzes[:, 0:1],
141                 quizzes[:, 2 + self.prompt_len : 2 + self.prompt_len + self.answer_len],
142                 quizzes[:, 1 + self.prompt_len : 1 + self.prompt_len + 1],
143                 quizzes[:, 1 : 1 + self.prompt_len],
144             ],
145             dim=1,
146         )
147
148         forward_to_backward[:, 0] = self.token_backward
149         forward_to_backward[:, 1 + self.answer_len] = self.token_backward
150
151         backward_to_forward = torch.cat(
152             [
153                 quizzes[:, 0:1],
154                 quizzes[:, 2 + self.answer_len :],
155                 quizzes[:, 1 + self.answer_len : 2 + self.answer_len],
156                 quizzes[:, 1 : 1 + self.answer_len],
157             ],
158             dim=1,
159         )
160
161         backward_to_forward[:, 0] = self.token_forward
162         backward_to_forward[:, 1 + self.prompt_len] = self.token_forward
163
164         m = i_forward.long()[:, None]
165
166         return m * forward_to_backward + (1 - m) * backward_to_forward
167
168     def reverse_random_half_in_place(self, quizzes):
169         i = torch.rand(quizzes.size(0)) < 0.5
170         if i.any():
171             quizzes[i] = self.reverse_time(quizzes[i])
172
173     def make_ar_mask(self, quizzes, first=False):
174         i_forward, i_backward = self.indices_forward_and_backward(quizzes)
175
176         t = torch.arange(quizzes.size(1), device=quizzes.device)
177
178         if first:
179             m_forward = (t >= 1).long() * (t < 1 + self.prompt_len).long()
180             m_backward = (t >= 1).long() * (t < 1 + self.answer_len).long()
181         else:
182             m_forward = (t >= 2 + self.prompt_len).long()
183             m_backward = (t >= 2 + self.answer_len).long()
184
185         m = i_forward.long()[:, None]
186
187         return m * m_forward + (1 - m) * m_backward
188
189     def generate_token_sequences(self, nb):
190         prompts, answers = self.problem.generate_prompts_and_answers(nb)
191
192         if self.prompt_len is None:
193             self.prompt_len = prompts.size(1)
194
195         if self.answer_len is None:
196             self.answer_len = answers.size(1)
197
198         assert prompts.size(1) == self.prompt_len and answers.size(1) == self.answer_len
199
200         result = []
201
202         for prompt, answer in zip(prompts, answers):
203             a = [
204                 torch.tensor([self.token_forward]),
205                 prompt,
206                 torch.tensor([self.token_forward]),
207                 answer,
208             ]
209
210             result.append(torch.cat(a, dim=0)[None, :])
211
212         return torch.cat(result, dim=0)
213
214     def __init__(
215         self,
216         problem,
217         nb_train_samples,
218         nb_test_samples,
219         back_accuracy,
220         batch_size,
221         result_dir,
222         logger,
223         device=torch.device("cpu"),
224     ):
225         super().__init__()
226
227         v = problem.nb_token_values()
228         self.token_forward = v
229         self.token_backward = v + 1
230         self.nb_token_values = v + 2
231
232         self.problem = problem
233         self.back_accuracy = back_accuracy
234         self.batch_size = batch_size
235         self.device = device
236         self.logger = logger
237         self.prompt_len = None
238         self.answer_len = None
239
240         self.LOCK_C_QUIZZES = threading.Lock()
241         self.train_c_quizzes = []
242         self.test_c_quizzes = []
243
244     def save_quizzes(
245         self,
246         result_dir,
247         filename_prefix,
248         quizzes,
249         mistakes=None,
250     ):
251         quizzes = quizzes.clone().to("cpu")
252         n_forward = quizzes[quizzes[:, 0] == self.token_forward]
253         n_backward = quizzes[:, 0] == self.token_backward
254         backward = quizzes[n_backward]
255         assert n_forward.size(0) + backward.size(0) == quizzes.size(0)
256         quizzes[n_backward] = self.reverse_time(quizzes[n_backward])
257
258         predicted_prompts = n_backward.long()
259         predicted_answers = 1 - predicted_prompts
260         if mistakes is not None:
261             # 0/-1/+1 ~ not-to-predict / predicted wrong / predicted correct
262             predicted_prompts *= mistakes.to("cpu")
263             predicted_answers *= mistakes.to("cpu")
264         else:
265             # 0/2 ~ not-to-predict / to predict
266             predicted_prompts *= 2
267             predicted_answers *= 2
268
269         self.problem.save_quizzes(
270             result_dir,
271             filename_prefix,
272             quizzes[:, 1 : 1 + self.prompt_len],
273             quizzes[:, 2 + self.prompt_len :],
274             predicted_prompts,
275             predicted_answers,
276         )
277
278     def vocabulary_size(self):
279         return self.nb_token_values
280
281     ######################################################################
282
283     def batches(self, model, split="train", desc=None):
284         assert split in {"train", "test"}
285
286         with self.LOCK_C_QUIZZES:
287             if split == "train":
288                 w_quizzes = model.train_w_quizzes
289                 c_quizzes = self.train_c_quizzes
290             else:
291                 w_quizzes = model.test_w_quizzes
292                 c_quizzes = self.test_c_quizzes
293
294             if len(c_quizzes) > 0:
295                 c_quizzes = torch.cat(c_quizzes, dim=0)
296                 if c_quizzes.size(0) > w_quizzes.size(0) // 2:
297                     i = torch.randperm(c_quizzes.size(0))[: w_quizzes.size(0) // 2]
298                     c_quizzes = c_quizzes[i]
299
300                 i = torch.randperm(w_quizzes.size(0))[
301                     : w_quizzes.size(0) - c_quizzes.size(0)
302                 ]
303                 w_quizzes = w_quizzes[i]
304
305                 self.nb_batch_w_quizzes = w_quizzes.size(0)
306                 self.nb_batch_c_quizzes = c_quizzes.size(0)
307
308                 input = torch.cat([w_quizzes, c_quizzes], dim=0)
309             else:
310                 input = w_quizzes
311                 self.nb_batch_w_quizzes = w_quizzes.size(0)
312                 self.nb_batch_c_quizzes = 0
313
314         # Shuffle
315         input = input[torch.randperm(input.size(0))]
316
317         if desc is None:
318             desc = f"epoch-{split}"
319         for batch in tqdm.tqdm(
320             input.split(self.batch_size), dynamic_ncols=True, desc=desc
321         ):
322             yield batch
323
324     ######################################################################
325
326     def produce_results(
327         self, n_epoch, model, result_dir, deterministic_synthesis, nmax=1000
328     ):
329         def compute_accuracy(input, log_prefix=None):
330             input = input.to(self.device)
331             ar_mask = self.make_ar_mask(input)
332             result = input.clone() * (1 - ar_mask)
333             seq_logproba = torch.empty(input.size(0), device=self.device)
334
335             masked_inplace_autoregression(
336                 model=model,
337                 batch_size=self.batch_size,
338                 input=result,
339                 ar_mask=ar_mask,
340                 seq_logproba=seq_logproba,
341                 temperature=1.0,
342                 deterministic_synthesis=deterministic_synthesis,
343                 progress_bar_desc=None,
344                 device=self.device,
345             )
346
347             correct = torch.empty(input.size(0), dtype=torch.int64, device=input.device)
348
349             n_forward = input[:, 0] == self.token_forward
350             n_backward = input[:, 0] == self.token_backward
351
352             correct[n_forward] = (
353                 (input[n_forward] == result[n_forward]).long().min(dim=1).values
354             )
355
356             if self.back_accuracy and n_backward.any():
357                 # accuracy of B->A*->B*=B instead of B->A*=A
358                 back_input = self.reverse_time(result[n_backward])
359                 back_input[:, 2 + self.prompt_len :] = input[
360                     n_backward, 1 : 1 + self.answer_len
361                 ]
362                 _, correct[n_backward] = compute_accuracy(back_input)
363
364             if log_prefix is not None:
365                 forward_nb_correct = correct[n_forward].sum()
366                 forward_nb_total = correct[n_forward].size(0)
367                 backward_nb_correct = correct[n_backward].sum()
368                 backward_nb_total = correct[n_backward].size(0)
369
370                 self.logger(
371                     f"{log_prefix}_forward_accuracy {n_epoch} model {model.id} nb_correct {forward_nb_correct} / {forward_nb_total} ({forward_nb_correct*100/forward_nb_total} %)"
372                 )
373
374                 self.logger(
375                     f"{log_prefix}_backward_accuracy {n_epoch} model {model.id} nb_correct {backward_nb_correct} / {backward_nb_total} ({backward_nb_correct*100/backward_nb_total} %)"
376                 )
377
378             return result, correct
379
380         compute_accuracy(model.train_w_quizzes[:nmax], log_prefix="train")
381
382         test_result, test_correct = compute_accuracy(
383             model.test_w_quizzes[:nmax], log_prefix="test"
384         )
385
386         main_test_accuracy = test_correct.sum() / test_correct.size(0)
387         self.logger(f"main_test_accuracy {n_epoch} {main_test_accuracy}")
388
389         ##############################
390
391         self.save_quizzes(
392             result_dir,
393             f"culture_prediction_{n_epoch:04d}_{model.id:02d}",
394             quizzes=test_result[:72],
395             mistakes=test_correct[:72] * 2 - 1,
396         )
397
398         return main_test_accuracy
399
400     ######################################################################
401
402     def renew_w_quizzes(self, model, nb, for_train=True):
403         input = model.train_w_quizzes if for_train else model.test_w_quizzes
404         nb = min(nb, input.size(0))
405         input[:-nb] = input[nb:].clone()
406         fresh_w_quizzes = self.generate_token_sequences(nb)
407         self.reverse_random_half_in_place(fresh_w_quizzes)
408         input[-nb:] = fresh_w_quizzes.to("cpu")
409
410     ######################################################################
411
412     def store_c_quizzes(self, new_c_quizzes, for_train=True):
413         with self.LOCK_C_QUIZZES:
414             if for_train:
415                 self.train_c_quizzes.append(new_c_quizzes.to("cpu"))
416             else:
417                 self.test_c_quizzes.append(new_c_quizzes.to("cpu"))
418
419     ######################################################################
420
421     def logproba_of_solutions(self, models, c_quizzes):
422         logproba = c_quizzes.new_zeros(
423             c_quizzes.size(0), len(models), device=self.device
424         )
425
426         for model in models:
427             with torch.autograd.no_grad():
428                 t = model.training
429                 model.eval()
430
431                 for input, l in zip(
432                     c_quizzes.split(self.batch_size), logproba.split(self.batch_size)
433                 ):
434                     input = input.to(self.device)
435                     ar_mask = self.make_ar_mask(input)
436                     output = model(mygpt.BracketedSequence(input)).x
437                     ce = (
438                         F.cross_entropy(output.transpose(1, 2), input, reduction="none")
439                         * ar_mask
440                     )
441                     l[:, model.id] = -ce.sum(dim=-1)
442
443                 model.train(t)
444
445         return logproba.to("cpu")
446
447     ###############################################################
448
449     def compute_correctness(
450         self,
451         c_quizzes,
452         models_for_validation,
453         bidirectional_validation=False,
454         deterministic_validation=True,
455     ):
456         if bidirectional_validation:
457             backward_c_quizzes = self.forward_to_backward(c_quizzes)
458
459         seq_logproba = torch.zeros(
460             c_quizzes.size(0),
461             max([m.id for m in models_for_validation]) + 1,
462             device=self.device,
463         )
464
465         nb_correct = 0
466
467         seq_logproba[...] = 0.0
468
469         for model in models_for_validation:
470             result = c_quizzes.clone()
471
472             ar_mask = self.make_ar_mask(result)
473
474             masked_inplace_autoregression(
475                 model=model,
476                 batch_size=self.batch_size,
477                 input=result,
478                 ar_mask=ar_mask,
479                 seq_logproba=seq_logproba[:, model.id],
480                 temperature=1.0,
481                 deterministic_synthesis=deterministic_validation,
482                 # progress_bar_desc="solving c_quizzes",
483                 device=self.device,
484             )
485
486             correct = (c_quizzes == result).long().min(dim=-1).values
487
488             if bidirectional_validation:
489                 backward_result = backward_c_quizzes.clone()
490
491                 ar_mask = self.make_ar_mask(backward_result)
492
493                 masked_inplace_autoregression(
494                     model=model,
495                     batch_size=self.batch_size,
496                     input=backward_result,
497                     ar_mask=ar_mask,
498                     seq_logproba=seq_logproba[:, model.id],
499                     temperature=1.0,
500                     deterministic_synthesis=deterministic_validation,
501                     # progress_bar_desc="solving backward c_quizzes",
502                     device=self.device,
503                 )
504
505                 backward_correct = (
506                     (backward_c_quizzes == backward_result).long().min(dim=-1).values
507                 )
508
509                 correct *= backward_correct
510
511             # endif
512
513             nb_correct += correct
514
515         return nb_correct, seq_logproba
516
517     ###############################################################
518
519     def generate_quizzes(self, nb, model_for_generation, temperature=1.0):
520         c_quizzes = torch.empty(
521             nb,
522             self.prompt_len + self.answer_len + 2,
523             device=self.device,
524             dtype=torch.int64,
525         )
526
527         seq_logproba = torch.zeros(nb, device=self.device)
528
529         # First, we generate the answer at high temperature
530
531         c_quizzes[:, 0] = self.token_backward
532         c_quizzes[:, 1 + self.answer_len] = self.token_backward
533
534         masked_inplace_autoregression(
535             model=model_for_generation,
536             batch_size=self.batch_size,
537             input=c_quizzes,
538             ar_mask=self.make_ar_mask(c_quizzes, first=True),
539             seq_logproba=seq_logproba,
540             temperature=temperature,
541             deterministic_synthesis=False,
542             device=self.device,
543         )
544
545         # Then, we generate the prompt at low temperature
546
547         masked_inplace_autoregression(
548             model=model_for_generation,
549             batch_size=self.batch_size,
550             input=c_quizzes,
551             ar_mask=self.make_ar_mask(c_quizzes),
552             seq_logproba=seq_logproba,
553             temperature=1 / temperature,
554             deterministic_synthesis=False,
555             device=self.device,
556         )
557
558         # Then we return the quizz, and re-generate the response, now
559         # at low temperature
560
561         c_quizzes = self.reverse_time(c_quizzes)
562
563         masked_inplace_autoregression(
564             model=model_for_generation,
565             batch_size=self.batch_size,
566             input=c_quizzes,
567             ar_mask=self.make_ar_mask(c_quizzes),
568             seq_logproba=seq_logproba,
569             temperature=1 / temperature,
570             deterministic_synthesis=False,
571             device=self.device,
572         )
573
574         return c_quizzes.to("cpu")