Update.
[culture.git] / quiz_machine.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 import math, os, tqdm, warnings
9
10 import torch, torchvision
11
12 from torch import nn
13 from torch.nn import functional as F
14
15 import mygpt
16 from mygpt import BracketedSequence
17
18 ######################################################################
19
20 # ar_mask is a tensor with 0s and 1s, of same shape as input, with
21 # 1s where tokens should be generated. The others are kept
22 # unchanged.
23
24
25 def one_batch_masked_inplace_autoregression(
26     model,
27     input,
28     ar_mask,
29     seq_logproba,
30     temperature,
31     deterministic_synthesis,
32 ):
33     to_generate = (ar_mask.sum(0) > 0).nonzero()
34
35     if to_generate.min() > 0:
36         model(
37             BracketedSequence(input, 0, to_generate.min())
38         )  # Needed to initialize the model's cache
39     for s in range(to_generate.min(), to_generate.max() + 1):
40         output = model(BracketedSequence(input, s, 1)).x
41
42         logits = output[:, s]
43
44         logits = (logits / temperature).log_softmax(dim=-1)
45
46         if deterministic_synthesis:
47             t_next = logits.argmax(-1)
48         else:
49             dist = torch.distributions.categorical.Categorical(logits=logits)
50             t_next = dist.sample()
51
52         all_n = torch.arange(t_next.size(0))
53
54         seq_logproba += logits[all_n, t_next]
55
56         input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
57
58
59 def masked_inplace_autoregression(
60     model,
61     batch_size,
62     input,
63     ar_mask,
64     seq_logproba,
65     temperature,
66     deterministic_synthesis,
67     forbidden_tokens=None,
68     logit_biases=None,
69     progress_bar_desc=None,
70     device=torch.device("cpu"),
71 ):
72     assert input.size() == ar_mask.size()
73
74     batches = zip(
75         input.split(batch_size),
76         ar_mask.split(batch_size),
77         seq_logproba.split(batch_size),
78     )
79
80     if progress_bar_desc is not None:
81         batches = tqdm.tqdm(
82             batches,
83             dynamic_ncols=True,
84             desc=progress_bar_desc,
85             total=(input.size(0) + batch_size - 1) // batch_size,
86         )
87
88     with torch.autograd.no_grad():
89         t = model.training
90         model.eval()
91
92         for input, ar_mask, seq_logproba in batches:
93             one_batch_masked_inplace_autoregression(
94                 model=model,
95                 input=input,
96                 ar_mask=ar_mask,
97                 seq_logproba=seq_logproba,
98                 temperature=temperature,
99                 deterministic_synthesis=deterministic_synthesis,
100             )
101
102         model.train(t)
103
104
105 ######################################################################
106
107
108 class QuizMachine:
109     def indices_forward_and_backward(self, quizzes):
110         i_forward = quizzes[:, 0] == self.token_forward
111         j_forward = quizzes[:, 1 + self.prompt_len] == self.token_forward
112         i_backward = quizzes[:, 0] == self.token_backward
113         j_backward = quizzes[:, 1 + self.answer_len] == self.token_backward
114         assert torch.logical_or(
115             torch.logical_and(i_forward, j_forward),
116             torch.logical_and(i_backward, j_backward),
117         ).all()
118         return i_forward, i_backward
119
120     def non_trivial(self, quizzes):
121         quizzes = quizzes.clone()
122         n_forward = quizzes[quizzes[:, 0] == self.token_forward]
123         n_backward = quizzes[:, 0] == self.token_backward
124         backward = quizzes[n_backward]
125         quizzes[n_backward] = self.reverse_time(quizzes[n_backward])
126         return torch.logical_not(
127             self.problem.trivial_prompts_and_answers(
128                 quizzes[:, 1 : 1 + self.prompt_len],
129                 quizzes[:, 2 + self.prompt_len :],
130             )
131         )
132
133     def reverse_time(self, quizzes):
134         i_forward, i_backward = self.indices_forward_and_backward(quizzes)
135
136         forward_to_backward = torch.cat(
137             [
138                 quizzes[:, 0:1],
139                 quizzes[:, 2 + self.prompt_len : 2 + self.prompt_len + self.answer_len],
140                 quizzes[:, 1 + self.prompt_len : 1 + self.prompt_len + 1],
141                 quizzes[:, 1 : 1 + self.prompt_len],
142             ],
143             dim=1,
144         )
145
146         forward_to_backward[:, 0] = self.token_backward
147         forward_to_backward[:, 1 + self.answer_len] = self.token_backward
148
149         backward_to_forward = torch.cat(
150             [
151                 quizzes[:, 0:1],
152                 quizzes[:, 2 + self.answer_len :],
153                 quizzes[:, 1 + self.answer_len : 2 + self.answer_len],
154                 quizzes[:, 1 : 1 + self.answer_len],
155             ],
156             dim=1,
157         )
158
159         backward_to_forward[:, 0] = self.token_forward
160         backward_to_forward[:, 1 + self.prompt_len] = self.token_forward
161
162         m = i_forward.long()[:, None]
163
164         return m * forward_to_backward + (1 - m) * backward_to_forward
165
166     def reverse_random_half_in_place(self, quizzes):
167         i = torch.rand(quizzes.size(0)) < 0.5
168         if i.any():
169             quizzes[i] = self.reverse_time(quizzes[i])
170
171     def make_ar_mask(self, quizzes, first=False):
172         i_forward, i_backward = self.indices_forward_and_backward(quizzes)
173
174         t = torch.arange(quizzes.size(1), device=quizzes.device)
175
176         if first:
177             m_forward = (t >= 1).long() * (t < 1 + self.prompt_len).long()
178             m_backward = (t >= 1).long() * (t < 1 + self.answer_len).long()
179         else:
180             m_forward = (t >= 2 + self.prompt_len).long()
181             m_backward = (t >= 2 + self.answer_len).long()
182
183         m = i_forward.long()[:, None]
184
185         return m * m_forward + (1 - m) * m_backward
186
187     def generate_token_sequences(self, nb):
188         prompts, answers = self.problem.generate_prompts_and_answers(nb)
189
190         if self.prompt_len is None:
191             self.prompt_len = prompts.size(1)
192
193         if self.answer_len is None:
194             self.answer_len = answers.size(1)
195
196         assert prompts.size(1) == self.prompt_len and answers.size(1) == self.answer_len
197
198         result = []
199
200         for prompt, answer in zip(prompts, answers):
201             a = [
202                 torch.tensor([self.token_forward]),
203                 prompt,
204                 torch.tensor([self.token_forward]),
205                 answer,
206             ]
207
208             result.append(torch.cat(a, dim=0)[None, :])
209
210         return torch.cat(result, dim=0)
211
212     def __init__(
213         self,
214         problem,
215         nb_train_samples,
216         nb_test_samples,
217         back_accuracy,
218         batch_size,
219         result_dir,
220         logger,
221         device=torch.device("cpu"),
222     ):
223         super().__init__()
224
225         v = problem.nb_token_values()
226         self.token_forward = v
227         self.token_backward = v + 1
228         self.nb_token_values = v + 2
229
230         self.problem = problem
231         self.back_accuracy = back_accuracy
232         self.batch_size = batch_size
233         self.device = device
234         self.logger = logger
235         self.prompt_len = None
236         self.answer_len = None
237
238         # self.train_w_quizzes = self.generate_token_sequences(nb_train_samples)
239         # self.reverse_random_half_in_place(self.train_w_quizzes)
240
241         # self.test_w_quizzes = self.generate_token_sequences(nb_test_samples).to(device)
242         # self.reverse_random_half_in_place(self.test_w_quizzes)
243
244         self.train_c_quizzes = []
245         self.test_c_quizzes = []
246
247         # if result_dir is not None:
248         # self.save_quizzes(
249         # result_dir,
250         # "culture_w_quizzes",
251         # self.train_w_quizzes[:72],
252         # )
253
254     def save_quizzes(
255         self,
256         result_dir,
257         filename_prefix,
258         quizzes,
259         mistakes=None,
260     ):
261         quizzes = quizzes.clone().to("cpu")
262         n_forward = quizzes[quizzes[:, 0] == self.token_forward]
263         n_backward = quizzes[:, 0] == self.token_backward
264         backward = quizzes[n_backward]
265         assert n_forward.size(0) + backward.size(0) == quizzes.size(0)
266         quizzes[n_backward] = self.reverse_time(quizzes[n_backward])
267
268         predicted_prompts = n_backward.long()
269         predicted_answers = 1 - predicted_prompts
270         if mistakes is not None:
271             # 0/-1/+1 ~ not-to-predict / predicted wrong / predicted correct
272             predicted_prompts *= mistakes.to("cpu")
273             predicted_answers *= mistakes.to("cpu")
274         else:
275             # 0/2 ~ not-to-predict / to predict
276             predicted_prompts *= 2
277             predicted_answers *= 2
278
279         self.problem.save_quizzes(
280             result_dir,
281             filename_prefix,
282             quizzes[:, 1 : 1 + self.prompt_len],
283             quizzes[:, 2 + self.prompt_len :],
284             predicted_prompts,
285             predicted_answers,
286         )
287
288     def vocabulary_size(self):
289         return self.nb_token_values
290
291     ######################################################################
292
293     def batches(self, model, split="train", desc=None):
294         assert split in {"train", "test"}
295         if split == "train":
296             w_quizzes = model.train_w_quizzes
297             c_quizzes = self.train_c_quizzes
298         else:
299             w_quizzes = model.test_w_quizzes
300             c_quizzes = self.test_c_quizzes
301
302         if len(c_quizzes) > 0:
303             c_quizzes = torch.cat(c_quizzes, dim=0)
304             if c_quizzes.size(0) > w_quizzes.size(0) // 2:
305                 i = torch.randperm(c_quizzes.size(0))[: w_quizzes.size(0) // 2]
306                 c_quizzes = c_quizzes[i]
307
308             i = torch.randperm(w_quizzes.size(0))[
309                 : w_quizzes.size(0) - c_quizzes.size(0)
310             ]
311             w_quizzes = w_quizzes[i]
312
313             self.nb_batch_w_quizzes = w_quizzes.size(0)
314             self.nb_batch_c_quizzes = c_quizzes.size(0)
315
316             input = torch.cat([w_quizzes, c_quizzes], dim=0)
317         else:
318             input = w_quizzes
319             self.nb_batch_w_quizzes = w_quizzes.size(0)
320             self.nb_batch_c_quizzes = 0
321
322         # Shuffle
323         input = input[torch.randperm(input.size(0))]
324
325         if desc is None:
326             desc = f"epoch-{split}"
327         for batch in tqdm.tqdm(
328             input.split(self.batch_size), dynamic_ncols=True, desc=desc
329         ):
330             yield batch
331
332     ######################################################################
333
334     def produce_results(
335         self, n_epoch, model, result_dir, deterministic_synthesis, nmax=1000
336     ):
337         def compute_accuracy(input, log_prefix=None):
338             ar_mask = self.make_ar_mask(input)
339             result = input.clone() * (1 - ar_mask)
340             seq_logproba = torch.empty(input.size(0), device=self.device)
341
342             masked_inplace_autoregression(
343                 model=model,
344                 batch_size=self.batch_size,
345                 input=result,
346                 ar_mask=ar_mask,
347                 seq_logproba=seq_logproba,
348                 temperature=1.0,
349                 deterministic_synthesis=deterministic_synthesis,
350                 progress_bar_desc=None,
351                 device=self.device,
352             )
353
354             correct = torch.empty(input.size(0), dtype=torch.int64, device=input.device)
355
356             n_forward = input[:, 0] == self.token_forward
357             n_backward = input[:, 0] == self.token_backward
358
359             correct[n_forward] = (
360                 (input[n_forward] == result[n_forward]).long().min(dim=1).values
361             )
362
363             if self.back_accuracy and n_backward.any():
364                 # accuracy of B->A*->B*=B instead of B->A*=A
365                 back_input = self.reverse_time(result[n_backward])
366                 back_input[:, 2 + self.prompt_len :] = input[
367                     n_backward, 1 : 1 + self.answer_len
368                 ]
369                 _, correct[n_backward] = compute_accuracy(back_input)
370
371             if log_prefix is not None:
372                 forward_nb_correct = correct[n_forward].sum()
373                 forward_nb_total = correct[n_forward].size(0)
374                 backward_nb_correct = correct[n_backward].sum()
375                 backward_nb_total = correct[n_backward].size(0)
376
377                 self.logger(
378                     f"{log_prefix}_forward_accuracy {n_epoch} model {model.id} nb_correct {forward_nb_correct} / {forward_nb_total} ({forward_nb_correct*100/forward_nb_total} %)"
379                 )
380
381                 self.logger(
382                     f"{log_prefix}_backward_accuracy {n_epoch} model {model.id} nb_correct {backward_nb_correct} / {backward_nb_total} ({backward_nb_correct*100/backward_nb_total} %)"
383                 )
384
385             return result, correct
386
387         compute_accuracy(model.train_w_quizzes[:nmax], log_prefix="train")
388
389         test_result, test_correct = compute_accuracy(
390             model.test_w_quizzes[:nmax], log_prefix="test"
391         )
392
393         main_test_accuracy = test_correct.sum() / test_correct.size(0)
394         self.logger(f"main_test_accuracy {n_epoch} {main_test_accuracy}")
395
396         ##############################
397
398         self.save_quizzes(
399             result_dir,
400             f"culture_prediction_{n_epoch:04d}_{model.id:02d}",
401             quizzes=test_result[:72],
402             mistakes=test_correct[:72] * 2 - 1,
403         )
404
405         return main_test_accuracy
406
407     ######################################################################
408
409     def renew_w_quizzes(self, model, nb, for_train=True):
410         input = model.train_w_quizzes if for_train else model.test_w_quizzes
411         nb = min(nb, input.size(0))
412         input[:-nb] = input[nb:].clone()
413         fresh_w_quizzes = self.generate_token_sequences(nb)
414         self.reverse_random_half_in_place(fresh_w_quizzes)
415         input[-nb:] = fresh_w_quizzes.to(self.device)
416
417     ######################################################################
418
419     def store_c_quizzes(self, new_c_quizzes, for_train=True):
420         if for_train:
421             self.train_c_quizzes.append(new_c_quizzes)
422         else:
423             self.test_c_quizzes.append(new_c_quizzes)
424
425     ######################################################################
426
427     def logproba_of_solutions(self, models, c_quizzes):
428         logproba = c_quizzes.new_zeros(c_quizzes.size(0), len(models))
429
430         for model in models:
431             for input, l in zip(
432                 c_quizzes.split(self.batch_size), logproba.split(self.batch_size)
433             ):
434                 ar_mask = self.make_ar_mask(input)
435                 output = model(mygpt.BracketedSequence(input)).x
436                 ce = (
437                     F.cross_entropy(output.transpose(1, 2), input, reduction="none")
438                     * ar_mask
439                 )
440                 l[:, model.id] = -ce.sum(dim=-1)
441
442         return logproba
443
444     ###############################################################
445
446     def compute_correctness(
447         self,
448         c_quizzes,
449         models_for_validation,
450         bidirectional_validation=False,
451         deterministic_validation=True,
452     ):
453         if bidirectional_validation:
454             backward_c_quizzes = self.forward_to_backward(c_quizzes)
455
456         seq_logproba = torch.zeros(
457             c_quizzes.size(0),
458             max([m.id for m in models_for_validation]) + 1,
459             device=self.device,
460         )
461
462         nb_correct = 0
463
464         seq_logproba[...] = 0.0
465
466         for model in models_for_validation:
467             result = c_quizzes.clone()
468
469             ar_mask = self.make_ar_mask(result)
470
471             masked_inplace_autoregression(
472                 model=model,
473                 batch_size=self.batch_size,
474                 input=result,
475                 ar_mask=ar_mask,
476                 seq_logproba=seq_logproba[:, model.id],
477                 temperature=1.0,
478                 deterministic_synthesis=deterministic_validation,
479                 # progress_bar_desc="solving c_quizzes",
480                 device=self.device,
481             )
482
483             correct = (c_quizzes == result).long().min(dim=-1).values
484
485             if bidirectional_validation:
486                 backward_result = backward_c_quizzes.clone()
487
488                 ar_mask = self.make_ar_mask(backward_result)
489
490                 masked_inplace_autoregression(
491                     model=model,
492                     batch_size=self.batch_size,
493                     input=backward_result,
494                     ar_mask=ar_mask,
495                     seq_logproba=seq_logproba[:, model.id],
496                     temperature=1.0,
497                     deterministic_synthesis=deterministic_validation,
498                     # progress_bar_desc="solving backward c_quizzes",
499                     device=self.device,
500                 )
501
502                 backward_correct = (
503                     (backward_c_quizzes == backward_result).long().min(dim=-1).values
504                 )
505
506                 correct *= backward_correct
507
508             # endif
509
510             nb_correct += correct
511
512         return nb_correct, seq_logproba
513
514     ###############################################################
515
516     def generate_quizzes(self, nb, model_for_generation, temperature=1.0):
517         c_quizzes = torch.empty(
518             nb,
519             self.prompt_len + self.answer_len + 2,
520             device=self.device,
521             dtype=torch.int64,
522         )
523
524         seq_logproba = torch.zeros(nb, device=self.device)
525
526         # First, we generate the answer at high temperature
527
528         c_quizzes[:, 0] = self.token_backward
529         c_quizzes[:, 1 + self.answer_len] = self.token_backward
530
531         masked_inplace_autoregression(
532             model=model_for_generation,
533             batch_size=self.batch_size,
534             input=c_quizzes,
535             ar_mask=self.make_ar_mask(c_quizzes, first=True),
536             seq_logproba=seq_logproba,
537             temperature=temperature,
538             deterministic_synthesis=False,
539             device=self.device,
540         )
541
542         # Then, we generate the prompt at low temperature
543
544         masked_inplace_autoregression(
545             model=model_for_generation,
546             batch_size=self.batch_size,
547             input=c_quizzes,
548             ar_mask=self.make_ar_mask(c_quizzes),
549             seq_logproba=seq_logproba,
550             temperature=1 / temperature,
551             deterministic_synthesis=False,
552             device=self.device,
553         )
554
555         # Then we return the quizz, and re-generate the response, now
556         # at low temperature
557
558         c_quizzes = self.reverse_time(c_quizzes)
559
560         masked_inplace_autoregression(
561             model=model_for_generation,
562             batch_size=self.batch_size,
563             input=c_quizzes,
564             ar_mask=self.make_ar_mask(c_quizzes),
565             seq_logproba=seq_logproba,
566             temperature=1 / temperature,
567             deterministic_synthesis=False,
568             device=self.device,
569         )
570
571         return c_quizzes