321df35a87d46da01ab396641e94a095d62bf3bf
[culture.git] / quiz_machine.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 import math, os, tqdm, warnings
9
10 import torch, torchvision
11
12 from torch import nn
13 from torch.nn import functional as F
14
15 import mygpt
16 from mygpt import BracketedSequence
17
18 ######################################################################
19
20 # ar_mask is a tensor with 0s and 1s, of same shape as input, with
21 # 1s where tokens should be generated. The others are kept
22 # unchanged.
23
24
25 def one_batch_masked_inplace_autoregression(
26     model,
27     input,
28     ar_mask,
29     seq_logproba,
30     temperature,
31     deterministic_synthesis,
32 ):
33     to_generate = (ar_mask.sum(0) > 0).nonzero()
34
35     if to_generate.min() > 0:
36         model(
37             BracketedSequence(input, 0, to_generate.min())
38         )  # Needed to initialize the model's cache
39     for s in range(to_generate.min(), to_generate.max() + 1):
40         output = model(BracketedSequence(input, s, 1)).x
41
42         logits = output[:, s]
43
44         logits = (logits / temperature).log_softmax(dim=-1)
45
46         if deterministic_synthesis:
47             t_next = logits.argmax(-1)
48         else:
49             dist = torch.distributions.categorical.Categorical(logits=logits)
50             t_next = dist.sample()
51
52         all_n = torch.arange(t_next.size(0))
53
54         seq_logproba += logits[all_n, t_next]
55
56         input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
57
58
59 def masked_inplace_autoregression(
60     model,
61     batch_size,
62     input,
63     ar_mask,
64     seq_logproba,
65     temperature,
66     deterministic_synthesis,
67     forbidden_tokens=None,
68     logit_biases=None,
69     progress_bar_desc=None,
70     device=torch.device("cpu"),
71 ):
72     assert input.size() == ar_mask.size()
73
74     batches = zip(
75         input.split(batch_size),
76         ar_mask.split(batch_size),
77         seq_logproba.split(batch_size),
78     )
79
80     if progress_bar_desc is not None:
81         batches = tqdm.tqdm(
82             batches,
83             dynamic_ncols=True,
84             desc=progress_bar_desc,
85             total=(input.size(0) + batch_size - 1) // batch_size,
86         )
87
88     with torch.autograd.no_grad():
89         t = model.training
90         model.eval()
91
92         for input, ar_mask, seq_logproba in batches:
93             one_batch_masked_inplace_autoregression(
94                 model=model,
95                 input=input,
96                 ar_mask=ar_mask,
97                 seq_logproba=seq_logproba,
98                 temperature=temperature,
99                 deterministic_synthesis=deterministic_synthesis,
100             )
101
102         model.train(t)
103
104
105 ######################################################################
106
107
108 class QuizMachine:
109     def indices_forward_and_backward(self, quizzes):
110         i_forward = quizzes[:, 0] == self.token_forward
111         j_forward = quizzes[:, 1 + self.prompt_len] == self.token_forward
112         i_backward = quizzes[:, 0] == self.token_backward
113         j_backward = quizzes[:, 1 + self.answer_len] == self.token_backward
114         assert torch.logical_or(
115             torch.logical_and(i_forward, j_forward),
116             torch.logical_and(i_backward, j_backward),
117         ).all()
118         return i_forward, i_backward
119
120     def non_trivial(self, quizzes):
121         quizzes = quizzes.clone()
122         n_forward = quizzes[quizzes[:, 0] == self.token_forward]
123         n_backward = quizzes[:, 0] == self.token_backward
124         backward = quizzes[n_backward]
125         quizzes[n_backward] = self.reverse_time(quizzes[n_backward])
126         return torch.logical_not(
127             self.problem.trivial_prompts_and_answers(
128                 quizzes[:, 1 : 1 + self.prompt_len],
129                 quizzes[:, 2 + self.prompt_len :],
130             )
131         )
132
133     def reverse_time(self, quizzes):
134         i_forward, i_backward = self.indices_forward_and_backward(quizzes)
135
136         forward_to_backward = torch.cat(
137             [
138                 quizzes[:, 0:1],
139                 quizzes[:, 2 + self.prompt_len : 2 + self.prompt_len + self.answer_len],
140                 quizzes[:, 1 + self.prompt_len : 1 + self.prompt_len + 1],
141                 quizzes[:, 1 : 1 + self.prompt_len],
142             ],
143             dim=1,
144         )
145
146         forward_to_backward[:, 0] = self.token_backward
147         forward_to_backward[:, 1 + self.answer_len] = self.token_backward
148
149         backward_to_forward = torch.cat(
150             [
151                 quizzes[:, 0:1],
152                 quizzes[:, 2 + self.answer_len :],
153                 quizzes[:, 1 + self.answer_len : 2 + self.answer_len],
154                 quizzes[:, 1 : 1 + self.answer_len],
155             ],
156             dim=1,
157         )
158
159         backward_to_forward[:, 0] = self.token_forward
160         backward_to_forward[:, 1 + self.prompt_len] = self.token_forward
161
162         m = i_forward.long()[:, None]
163
164         return m * forward_to_backward + (1 - m) * backward_to_forward
165
166     def reverse_random_half_in_place(self, quizzes):
167         i = torch.rand(quizzes.size(0)) < 0.5
168         if i.any():
169             quizzes[i] = self.reverse_time(quizzes[i])
170
171     def make_ar_mask(self, quizzes, first=False):
172         i_forward, i_backward = self.indices_forward_and_backward(quizzes)
173
174         t = torch.arange(quizzes.size(1), device=quizzes.device)
175
176         if first:
177             m_forward = (t >= 1).long() * (t < 1 + self.prompt_len).long()
178             m_backward = (t >= 1).long() * (t < 1 + self.answer_len).long()
179         else:
180             m_forward = (t >= 2 + self.prompt_len).long()
181             m_backward = (t >= 2 + self.answer_len).long()
182
183         m = i_forward.long()[:, None]
184
185         return m * m_forward + (1 - m) * m_backward
186
187     def generate_token_sequences(self, nb):
188         prompts, answers = self.problem.generate_prompts_and_answers(nb)
189
190         if self.prompt_len is None:
191             self.prompt_len = prompts.size(1)
192
193         if self.answer_len is None:
194             self.answer_len = answers.size(1)
195
196         assert prompts.size(1) == self.prompt_len and answers.size(1) == self.answer_len
197
198         result = []
199
200         for prompt, answer in zip(prompts, answers):
201             a = [
202                 torch.tensor([self.token_forward]),
203                 prompt,
204                 torch.tensor([self.token_forward]),
205                 answer,
206             ]
207
208             result.append(torch.cat(a, dim=0)[None, :])
209
210         return torch.cat(result, dim=0)
211
212     def __init__(
213         self,
214         problem,
215         nb_train_samples,
216         nb_test_samples,
217         back_accuracy,
218         batch_size,
219         result_dir,
220         logger,
221         device=torch.device("cpu"),
222     ):
223         super().__init__()
224
225         v = problem.nb_token_values()
226         self.token_forward = v
227         self.token_backward = v + 1
228         self.nb_token_values = v + 2
229
230         self.problem = problem
231         self.back_accuracy = back_accuracy
232         self.batch_size = batch_size
233         self.device = device
234         self.logger = logger
235         self.prompt_len = None
236         self.answer_len = None
237
238         self.train_w_quizzes = self.generate_token_sequences(nb_train_samples)
239         self.reverse_random_half_in_place(self.train_w_quizzes)
240         self.train_w_quizzes = self.train_w_quizzes.to(device)
241
242         self.test_w_quizzes = self.generate_token_sequences(nb_test_samples).to(device)
243         self.reverse_random_half_in_place(self.test_w_quizzes)
244         self.test_w_quizzes = self.test_w_quizzes.to(device)
245
246         self.train_c_quizzes = []
247         self.test_c_quizzes = []
248
249         if result_dir is not None:
250             self.save_quizzes(
251                 result_dir,
252                 "culture_w_quizzes",
253                 self.train_w_quizzes[:72],
254             )
255
256     def save_quizzes(
257         self,
258         result_dir,
259         filename_prefix,
260         quizzes,
261         mistakes=None,
262     ):
263         quizzes = quizzes.clone().to("cpu")
264         n_forward = quizzes[quizzes[:, 0] == self.token_forward]
265         n_backward = quizzes[:, 0] == self.token_backward
266         backward = quizzes[n_backward]
267         assert n_forward.size(0) + backward.size(0) == quizzes.size(0)
268         quizzes[n_backward] = self.reverse_time(quizzes[n_backward])
269
270         predicted_prompts = n_backward.long()
271         predicted_answers = 1 - predicted_prompts
272         if mistakes is not None:
273             # 0/-1/+1 ~ not-to-predict / predicted wrong / predicted correct
274             predicted_prompts *= mistakes.to("cpu")
275             predicted_answers *= mistakes.to("cpu")
276         else:
277             # 0/2 ~ not-to-predict / to predict
278             predicted_prompts *= 2
279             predicted_answers *= 2
280
281         self.problem.save_quizzes(
282             result_dir,
283             filename_prefix,
284             quizzes[:, 1 : 1 + self.prompt_len],
285             quizzes[:, 2 + self.prompt_len :],
286             predicted_prompts,
287             predicted_answers,
288         )
289
290     def batches(self, split="train", desc=None):
291         assert split in {"train", "test"}
292         if split == "train":
293             w_quizzes = self.train_w_quizzes
294             c_quizzes = self.train_c_quizzes
295         else:
296             w_quizzes = self.test_w_quizzes
297             c_quizzes = self.test_c_quizzes
298
299         if len(c_quizzes) > 0:
300             c_quizzes = torch.cat(c_quizzes, dim=0)
301             if c_quizzes.size(0) > w_quizzes.size(0) // 2:
302                 i = torch.randperm(c_quizzes.size(0))[: w_quizzes.size(0) // 2]
303                 c_quizzes = c_quizzes[i]
304
305             i = torch.randperm(w_quizzes.size(0))[
306                 : w_quizzes.size(0) - c_quizzes.size(0)
307             ]
308             w_quizzes = w_quizzes[i]
309
310             self.nb_batch_w_quizzes = w_quizzes.size(0)
311             self.nb_batch_c_quizzes = c_quizzes.size(0)
312
313             input = torch.cat([w_quizzes, c_quizzes], dim=0)
314         else:
315             input = w_quizzes
316             self.nb_batch_w_quizzes = w_quizzes.size(0)
317             self.nb_batch_c_quizzes = 0
318
319         # Shuffle
320         input = input[torch.randperm(input.size(0))]
321
322         if desc is None:
323             desc = f"epoch-{split}"
324         for batch in tqdm.tqdm(
325             input.split(self.batch_size), dynamic_ncols=True, desc=desc
326         ):
327             yield batch
328
329     def vocabulary_size(self):
330         return self.nb_token_values
331
332     def produce_results(
333         self, n_epoch, model, result_dir, deterministic_synthesis, nmax=1000
334     ):
335         def compute_accuracy(input, log_prefix=None):
336             ar_mask = self.make_ar_mask(input)
337             result = input.clone() * (1 - ar_mask)
338             seq_logproba = torch.empty(input.size(0), device=self.device)
339
340             masked_inplace_autoregression(
341                 model=model,
342                 batch_size=self.batch_size,
343                 input=result,
344                 ar_mask=ar_mask,
345                 seq_logproba=seq_logproba,
346                 temperature=1.0,
347                 deterministic_synthesis=deterministic_synthesis,
348                 progress_bar_desc=None,
349                 device=self.device,
350             )
351
352             correct = torch.empty(input.size(0), dtype=torch.int64, device=input.device)
353
354             n_forward = input[:, 0] == self.token_forward
355             n_backward = input[:, 0] == self.token_backward
356
357             correct[n_forward] = (
358                 (input[n_forward] == result[n_forward]).long().min(dim=1).values
359             )
360
361             if self.back_accuracy and n_backward.any():
362                 # accuracy of B->A*->B*=B instead of B->A*=A
363                 back_input = self.reverse_time(result[n_backward])
364                 back_input[:, 2 + self.prompt_len :] = input[
365                     n_backward, 1 : 1 + self.answer_len
366                 ]
367                 _, correct[n_backward] = compute_accuracy(back_input)
368
369             if log_prefix is not None:
370                 forward_nb_correct = correct[n_forward].sum()
371                 forward_nb_total = correct[n_forward].size(0)
372                 backward_nb_correct = correct[n_backward].sum()
373                 backward_nb_total = correct[n_backward].size(0)
374
375                 self.logger(
376                     f"{log_prefix}_forward_accuracy {n_epoch} model {model.id} nb_correct {forward_nb_correct} / {forward_nb_total} ({forward_nb_correct*100/forward_nb_total} %)"
377                 )
378
379                 self.logger(
380                     f"{log_prefix}_backward_accuracy {n_epoch} model {model.id} nb_correct {backward_nb_correct} / {backward_nb_total} ({backward_nb_correct*100/backward_nb_total} %)"
381                 )
382
383             return result, correct
384
385         compute_accuracy(self.train_w_quizzes[:nmax], log_prefix="train")
386
387         test_result, test_correct = compute_accuracy(
388             self.test_w_quizzes[:nmax], log_prefix="test"
389         )
390
391         main_test_accuracy = test_correct.sum() / test_correct.size(0)
392         self.logger(f"main_test_accuracy {n_epoch} {main_test_accuracy}")
393
394         ##############################
395
396         self.save_quizzes(
397             result_dir,
398             f"culture_prediction_{n_epoch:04d}_{model.id:02d}",
399             quizzes=test_result[:72],
400             mistakes=test_correct[:72] * 2 - 1,
401         )
402
403         return main_test_accuracy
404
405     def renew_w_quizzes(self, nb, for_train=True):
406         input = self.train_w_quizzes if for_train else self.test_w_quizzes
407         nb = min(nb, input.size(0))
408         input[:-nb] = input[nb:].clone()
409         fresh_w_quizzes = self.generate_token_sequences(nb)
410         self.reverse_random_half_in_place(fresh_w_quizzes)
411         input[-nb:] = fresh_w_quizzes.to(self.device)
412
413     def store_c_quizzes(self, new_c_quizzes, for_train=True):
414         if for_train:
415             self.train_c_quizzes.append(new_c_quizzes)
416         else:
417             self.test_c_quizzes.append(new_c_quizzes)
418
419     def compute_correctness(
420         self,
421         c_quizzes,
422         models_for_validation,
423         bidirectional_validation=False,
424         deterministic_validation=True,
425     ):
426         if bidirectional_validation:
427             backward_c_quizzes = self.forward_to_backward(c_quizzes)
428
429         seq_logproba = torch.zeros(
430             c_quizzes.size(0),
431             max([m.id for m in models_for_validation]) + 1,
432             device=self.device,
433         )
434
435         nb_correct = 0
436
437         seq_logproba[...] = 0.0
438
439         for model in models_for_validation:
440             result = c_quizzes.clone()
441
442             ar_mask = self.make_ar_mask(result)
443
444             masked_inplace_autoregression(
445                 model=model,
446                 batch_size=self.batch_size,
447                 input=result,
448                 ar_mask=ar_mask,
449                 seq_logproba=seq_logproba[:, model.id],
450                 temperature=1.0,
451                 deterministic_synthesis=deterministic_validation,
452                 # progress_bar_desc="solving c_quizzes",
453                 device=self.device,
454             )
455
456             correct = (c_quizzes == result).long().min(dim=-1).values
457
458             if bidirectional_validation:
459                 backward_result = backward_c_quizzes.clone()
460
461                 ar_mask = self.make_ar_mask(backward_result)
462
463                 masked_inplace_autoregression(
464                     model=model,
465                     batch_size=self.batch_size,
466                     input=backward_result,
467                     ar_mask=ar_mask,
468                     seq_logproba=seq_logproba[:, model.id],
469                     temperature=1.0,
470                     deterministic_synthesis=deterministic_validation,
471                     # progress_bar_desc="solving backward c_quizzes",
472                     device=self.device,
473                 )
474
475                 backward_correct = (
476                     (backward_c_quizzes == backward_result).long().min(dim=-1).values
477                 )
478
479                 correct *= backward_correct
480
481             # endif
482
483             nb_correct += correct
484
485         return nb_correct, seq_logproba
486
487     ###############################################################
488
489     def generate_quizzes(self, nb, model_for_generation, temperature=1.0):
490         c_quizzes = torch.empty(
491             nb, self.train_w_quizzes.size(1), device=self.device, dtype=torch.int64
492         )
493
494         seq_logproba = torch.zeros(nb, device=self.device)
495
496         # First, we generate the answer at high temperature
497
498         c_quizzes[:, 0] = self.token_backward
499         c_quizzes[:, 1 + self.answer_len] = self.token_backward
500
501         masked_inplace_autoregression(
502             model=model_for_generation,
503             batch_size=self.batch_size,
504             input=c_quizzes,
505             ar_mask=self.make_ar_mask(c_quizzes, first=True),
506             seq_logproba=seq_logproba,
507             temperature=temperature,
508             deterministic_synthesis=False,
509             device=self.device,
510         )
511
512         # Then, we generate the prompt at low temperature
513
514         masked_inplace_autoregression(
515             model=model_for_generation,
516             batch_size=self.batch_size,
517             input=c_quizzes,
518             ar_mask=self.make_ar_mask(c_quizzes),
519             seq_logproba=seq_logproba,
520             temperature=1 / temperature,
521             deterministic_synthesis=False,
522             device=self.device,
523         )
524
525         # Then we return the quizz, and re-generate the response, now
526         # at low temperature
527
528         c_quizzes = self.reverse_time(c_quizzes)
529
530         masked_inplace_autoregression(
531             model=model_for_generation,
532             batch_size=self.batch_size,
533             input=c_quizzes,
534             ar_mask=self.make_ar_mask(c_quizzes),
535             seq_logproba=seq_logproba,
536             temperature=1 / temperature,
537             deterministic_synthesis=False,
538             device=self.device,
539         )
540
541         return c_quizzes