3 #########################################################################
4 # This program is free software: you can redistribute it and/or modify #
5 # it under the terms of the version 3 of the GNU General Public License #
6 # as published by the Free Software Foundation. #
8 # This program is distributed in the hope that it will be useful, but #
9 # WITHOUT ANY WARRANTY; without even the implied warranty of #
10 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU #
11 # General Public License for more details. #
13 # You should have received a copy of the GNU General Public License #
14 # along with this program. If not, see <http://www.gnu.org/licenses/>. #
16 # Written by and Copyright (C) Francois Fleuret #
17 # Contact <francois.fleuret@idiap.ch> for comments & bug reports #
18 #########################################################################
21 from torch.nn import functional as fn
22 from torch import Tensor
23 from torch.autograd import Variable
24 from torch.nn import Module
29 def __init__(self, input_dim, hidden_dim, output_dim):
30 super(MLP, self).__init__()
31 self.fc1 = nn.Linear(input_dim, hidden_dim)
32 self.fc2 = nn.Linear(hidden_dim, output_dim)
41 input = Variable(Tensor(100, 10).normal_())
42 target = Variable(Tensor(100).normal_())
44 criterion = nn.MSELoss()
45 loss = criterion(output, target)
47 agtree2dot.save_dot(loss,
48 { input: 'input', target: 'target', loss: 'loss' },
49 open('./mlp.dot', 'w'))
51 print('Generated mlp.dot. You can convert it to pdf with')
52 print('> dot mlp.dot -Lg -T pdf -o mlp.pdf')