Update
[beaver.git] / mygpt.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 import math
9
10 import torch
11
12 from torch import nn
13 from torch.nn import functional as F
14
15 ######################################################################
16
17 # A BracketedSequence is a BxTx... tensor with a first and a nb time
18 # steps to compute.
19
20 # Modules able to process it expect that they will have to process a
21 # first bracket starting at t=0, followed by a succession of brackets
22 # that move forward in time, do not overlap, and cover the axis T with
23 # no holes.
24 #
25 # Although it is more general, for a classical prompt-conditioned
26 # auto-regressive process it will be a first bracket starting at 0 and
27 # of arbitrary length for the "prompt", followed by brackets of length
28 # 1 for the successive tokens.
29 #
30 # Modules able to process brackets may implement a cache that is
31 # resetted when the input bracket starts at t=0
32
33
34 class BracketedSequence:
35     def __init__(self, x, first=None, nb=None):
36         self.x = x
37         self.first = 0 if first is None else first
38         self.nb = x.size(1) if nb is None else nb
39
40     def slice(self):
41         return self.x[:, self.first : self.first + self.nb]
42
43
44 ######################################################################
45
46
47 class WithResidual(nn.Module):
48     def __init__(self, *f):
49         super().__init__()
50         self.f = f[0] if len(f) == 1 else nn.Sequential(*f)
51
52     def forward(self, bs):
53         bs.x = bs.x + self.f(bs).x
54         return bs
55
56
57 ######################################################################
58
59
60 class CacheWrapper(nn.Module):
61     def __init__(self, *f):
62         super().__init__()
63         self.f = f[0] if len(f) == 1 else nn.Sequential(*f)
64
65     def forward(self, bs):
66         if bs.first == 0:
67             y = self.f(bs.slice())
68             self.cache_y = y.new(*((y.size(0), bs.x.size(1)) + y.size()[2:]))
69             self.cache_y[:, bs.first : bs.first + bs.nb] = y
70         else:
71             self.cache_y[:, bs.first : bs.first + bs.nb] = self.f(bs.slice())
72
73         bs.x = self.cache_y
74
75         return bs
76
77
78 ##############################
79
80
81 class AddPositionalEncoding(nn.Module):
82     def __init__(self, len_max):
83         super().__init__()
84         self.len_max = len_max
85
86     # [Vaswani et al 2018] PE_{t,2i} = sin(t/(L^{2i/D})), PE_{t,2i+1} = cos(t/(L^{2i/D}))
87
88     def forward(self, bs, order):  # NxTxD, T
89         if bs.first == 0:
90             t = (
91                 torch.arange(bs.x.size(1) + 1, dtype=bs.x.dtype, device=bs.x.device)[
92                     :, None
93                 ]
94                 - 1
95             )
96             j = torch.arange(bs.x.size(2) // 2, dtype=bs.x.dtype, device=bs.x.device)[
97                 None, :
98             ]
99             k = j % 2
100             pe = (
101                 torch.sin(
102                     t / (self.len_max ** ((j - k) / bs.x.size(2))) + math.pi / 2 * k
103                 )
104                 .unsqueeze(0)
105                 .expand(bs.x.size(0), -1, -1)
106             )
107
108             order_output = order + 1
109             order_input = torch.cat(
110                 (order.new_zeros(order.size(0), 1), order[:, :-1] + 1), 1
111             )
112
113             self.pe = torch.cat(
114                 (
115                     pe.gather(1, order_input.unsqueeze(-1).expand(-1, -1, pe.size(-1))),
116                     pe.gather(
117                         1, order_output.unsqueeze(-1).expand(-1, -1, pe.size(-1))
118                     ),
119                 ),
120                 2,
121             )
122
123             self.cache_y = bs.x.new(bs.x.size())
124
125         self.cache_y[:, bs.first : bs.first + bs.nb] = (
126             bs.slice() + self.pe[:, bs.first : bs.first + bs.nb]
127         )
128
129         bs.x = self.cache_y
130
131         return bs
132
133
134 ##############################
135
136
137 class QKVAttention(nn.Module):
138     def __init__(
139         self, dim_in, dim_qk, dim_v, nb_heads=1, causal=False, attention_dropout=0.0
140     ):
141         super().__init__()
142
143         def randw(*d):
144             return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1]))
145
146         self.causal = causal
147         self.attention_dropout = attention_dropout
148
149         self.w_q = randw(nb_heads, dim_qk, dim_in)
150         self.w_k = randw(nb_heads, dim_qk, dim_in)
151         self.w_v = randw(nb_heads, dim_v, dim_in)
152         self.w_o = randw(dim_v * nb_heads, dim_in)
153
154     def forward(self, bs_q):
155         x_q = bs_q.x
156
157         if bs_q.first == 0:
158             self.cache_k = x_q.new_zeros(
159                 x_q.size(0), self.w_k.size(0), x_q.size(1), self.w_k.size(1)
160             )
161             self.cache_v = x_q.new_zeros(
162                 x_q.size(0), self.w_v.size(0), x_q.size(1), self.w_v.size(1)
163             )
164             self.cache_y = x_q.new_zeros(x_q.size(0), x_q.size(1), self.w_o.size(1))
165
166         q = torch.einsum(
167             "ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_q
168         )
169         self.cache_k[:, :, bs_q.first : bs_q.first + bs_q.nb] = torch.einsum(
170             "ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_k
171         )
172         self.cache_v[:, :, bs_q.first : bs_q.first + bs_q.nb] = torch.einsum(
173             "ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_v
174         )
175
176         a = torch.einsum(
177             "nhtd,nhsd->nhts", q, self.cache_k[:, :, : bs_q.first + bs_q.nb]
178         ) / math.sqrt(self.w_q.size(1))
179
180         if self.causal:
181             if bs_q.first == 0:
182                 self.cache_attzero = (
183                     torch.arange(x_q.size(1), device=q.device)[None, None, :, None]
184                     < torch.arange(x_q.size(1), device=q.device)[None, None, None, :]
185                 )
186             a = a.masked_fill(
187                 self.cache_attzero[
188                     :, :, bs_q.first : bs_q.first + bs_q.nb, : bs_q.first + bs_q.nb
189                 ],
190                 float("-inf"),
191             )
192
193         a = a.softmax(dim=3)
194         a = F.dropout(a, self.attention_dropout, self.training)
195
196         y = torch.einsum(
197             "nhts,nhsd->nthd", a, self.cache_v[:, :, : bs_q.first + bs_q.nb]
198         ).flatten(2)
199
200         self.cache_y[:, bs_q.first : bs_q.first + bs_q.nb] = y @ self.w_o
201
202         bs_q.x = self.cache_y
203
204         return bs_q
205
206
207 ##############################
208
209
210 class MyGPT(nn.Module):
211     def __init__(
212         self,
213         vocabulary_size,
214         dim_model,
215         dim_keys,
216         dim_hidden,
217         nb_heads,
218         nb_blocks,
219         causal=False,
220         dropout=0.0,
221         len_max=1e5,
222     ):
223         super().__init__()
224
225         assert dim_model % nb_heads == 0
226
227         self.embedding = CacheWrapper(
228             nn.Embedding(vocabulary_size, dim_model), nn.Dropout(dropout)
229         )
230         self.pe = AddPositionalEncoding(len_max)
231
232         trunk_blocks = []
233
234         for b in range(nb_blocks):
235             trunk_blocks += [
236                 WithResidual(
237                     CacheWrapper(nn.LayerNorm((dim_model,))),
238                     QKVAttention(
239                         dim_in=dim_model,
240                         dim_qk=dim_keys,
241                         dim_v=dim_model // nb_heads,
242                         nb_heads=nb_heads,
243                         causal=causal,
244                         attention_dropout=dropout,
245                     ),
246                 ),
247                 WithResidual(
248                     CacheWrapper(
249                         nn.LayerNorm((dim_model,)),
250                         nn.Linear(in_features=dim_model, out_features=dim_hidden),
251                         nn.ReLU(),
252                         nn.Linear(in_features=dim_hidden, out_features=dim_model),
253                         nn.Dropout(dropout),
254                     ),
255                 ),
256             ]
257
258         self.trunk = nn.Sequential(*trunk_blocks)
259
260         self.readout = CacheWrapper(
261             nn.Linear(in_features=dim_model, out_features=vocabulary_size)
262         )
263
264         with torch.no_grad():
265             for m in self.modules():
266                 if isinstance(m, nn.Embedding):
267                     m.weight.normal_(mean=0, std=2e-2)
268                 elif isinstance(m, nn.LayerNorm):
269                     m.bias.zero_()
270                     m.weight.fill_(1.0)
271
272     def forward(self, bs, mode="standard", order=None):
273         bs = BracketedSequence(F.pad(bs.x, (1, -1)), bs.first, bs.nb)
274         if order is None:
275             order = torch.arange(bs.x.size(1), device=bs.x.device)[None, :].expand_as(
276                 bs.x
277             )
278         bs = self.embedding(bs)
279         bs = self.pe(bs, order)
280
281         if mode == "standard":
282             bs = self.trunk(bs)
283             bs = self.readout(bs)
284         elif mode == "head":
285             bs = self.trunk(bs)
286         elif mode == "deep":
287             r = []
288             for l in self.trunk:
289                 bs = l(bs)
290                 r += [bs.slice()]
291             bs = BracketedSequence(torch.cat(r, -1))
292         else:
293             raise ValueError(f"{mode=}")
294         return bs
295
296
297 ######################################################################
298
299 if __name__ == "__main__":
300     print("Basic check.")
301
302     vocabulary_size = 10
303     x = torch.randint(vocabulary_size, (9, 7))
304
305     model = MyGPT(
306         vocabulary_size=vocabulary_size,
307         dim_model=18,
308         dim_keys=50,
309         dim_hidden=100,
310         nb_heads=2,
311         nb_blocks=1,
312         dropout=0.1,
313     )
314
315     model.eval()
316
317     y1 = model(BracketedSequence(x)).x
318
319     y2 = torch.randn_like(y1)
320     for s in range(x.size(1)):
321         z = model(BracketedSequence(x, s, 1))
322         y2[:, s] = z.x[:, s]
323
324     # print(y1.max(dim = 2).values)
325     # print(y2.max(dim = 2).values)
326     print(f"error={((y1 - y2).norm() / (y1.norm() + y2.norm())).item()}")
327
328 ######################################################################