Update.
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--no_checkpoint", action="store_true", default=False)
68
69 parser.add_argument("--overwrite_results", action="store_true", default=False)
70
71 parser.add_argument("--one_shot", action="store_true", default=False)
72
73 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
74
75 ##############################
76 # maze options
77
78 parser.add_argument("--maze_height", type=int, default=13)
79
80 parser.add_argument("--maze_width", type=int, default=21)
81
82 parser.add_argument("--maze_nb_walls", type=int, default=15)
83
84 ######################################################################
85
86 args = parser.parse_args()
87
88 try:
89     os.mkdir(args.result_dir)
90 except FileExistsError:
91     if not args.overwrite_results:
92         print(f"result directory {args.result_dir} already exists")
93         exit(1)
94
95 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
96
97 if args.seed >= 0:
98     # torch.backends.cudnn.deterministic = True
99     # torch.backends.cudnn.benchmark = False
100     # torch.use_deterministic_algorithms(True)
101     torch.manual_seed(args.seed)
102     if torch.cuda.is_available():
103         torch.cuda.manual_seed_all(args.seed)
104
105 ######################################################################
106
107
108 def log_string(s):
109     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
110
111     if log_file is not None:
112         log_file.write(t + s + "\n")
113         log_file.flush()
114
115     print(t + s)
116     sys.stdout.flush()
117
118
119 for n in vars(args):
120     log_string(f"args.{n} {getattr(args, n)}")
121
122 ######################################################################
123
124
125 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
126 # tokens that should be generated
127
128
129 def masked_inplace_autoregression(model, batch_size, input, ar_mask):
130     for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
131         i = (ar_mask.sum(0) > 0).nonzero()
132         if i.min() > 0:
133             # Needed to initialize the model's cache
134             model(mygpt.BracketedSequence(input, 0, i.min()))
135         for s in range(i.min(), i.max() + 1):
136             output = model(mygpt.BracketedSequence(input, s, 1)).x
137             logits = output[:, s]
138             if args.deterministic_synthesis:
139                 t_next = logits.argmax(1)
140             else:
141                 dist = torch.distributions.categorical.Categorical(logits=logits)
142                 t_next = dist.sample()
143             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
144
145
146 ######################################################################
147
148
149 def compute_perplexity(model, split="train"):
150     with torch.autograd.no_grad():
151         t = model.training
152         model.eval()
153
154         nb_samples, acc_loss = 0, 0.0
155
156         for input in task.batches(split=split):
157             input = input.to(device)
158
159             output = model(mygpt.BracketedSequence(input)).x
160             loss = F.cross_entropy(output.transpose(1, 2), input)
161             acc_loss += loss.item() * input.size(0)
162             nb_samples += input.size(0)
163
164         model.train(t)
165
166         return math.exp(min(100, acc_loss / nb_samples))
167
168
169 ######################################################################
170
171
172 def one_shot(gpt, task):
173     t = gpt.training
174     gpt.eval()
175     mode='head'
176     dim_in=args.dim_model * (args.nb_blocks * 2 if mode=='deep' else 1)
177     model = nn.Sequential(
178         nn.Linear(dim_in, args.dim_model),
179         nn.ReLU(),
180         nn.Linear(args.dim_model, args.dim_model),
181         nn.ReLU(),
182         nn.Linear(args.dim_model, 4),
183     ).to(device)
184
185     for n_epoch in range(args.nb_epochs):
186         learning_rate = learning_rate_schedule[n_epoch]
187         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
188
189         acc_train_loss, nb_train_samples = 0, 0
190         for input, targets in task.policy_batches(split="train"):
191             output_gpt = gpt(mygpt.BracketedSequence(input), mode=mode).x
192             output = model(output_gpt)
193             targets = targets * (input.unsqueeze(-1) == maze.v_empty)
194             output = output * (input.unsqueeze(-1) == maze.v_empty)
195             # loss = (output.softmax(-1) - targets).abs().max(-1).values.mean()
196             loss = (
197                 -(output.log_softmax(-1) * targets).sum()
198                 / (input == maze.v_empty).sum()
199             )
200             acc_train_loss += loss.item() * input.size(0)
201             nb_train_samples += input.size(0)
202
203             optimizer.zero_grad()
204             loss.backward()
205             optimizer.step()
206
207         acc_test_loss, nb_test_samples = 0, 0
208         for input, targets in task.policy_batches(split="test"):
209             output_gpt = gpt(mygpt.BracketedSequence(input), mode=mode).x
210             output = model(output_gpt)
211             targets = targets * (input.unsqueeze(-1) == maze.v_empty)
212             output = output * (input.unsqueeze(-1) == maze.v_empty)
213             # loss = (output.softmax(-1) - targets).abs().max(-1).values.mean()
214             loss = (
215                 -(output.log_softmax(-1) * targets).sum()
216                 / (input == maze.v_empty).sum()
217             )
218             acc_test_loss += loss.item() * input.size(0)
219             nb_test_samples += input.size(0)
220
221         log_string(
222             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
223         )
224
225         # -------------------
226         input = task.test_input[:32, : task.height * task.width]
227         targets = task.test_policies[:32]
228         output_gpt = gpt(mygpt.BracketedSequence(input), mode=mode).x
229         output = model(output_gpt)
230         # losses = (-output.log_softmax(-1) * targets + targets.xlogy(targets)).sum(-1)
231         # losses = losses * (input == maze.v_empty)
232         # losses = losses / losses.max()
233         # losses = (output.softmax(-1) - targets).abs().max(-1).values
234         # losses = (losses >= 0.05).float()
235         losses = (
236             (F.one_hot(output.argmax(-1), num_classes=4) * targets).sum(-1) == 0
237         ).float()
238         losses = losses.reshape(-1, args.maze_height, args.maze_width)
239         input = input.reshape(-1, args.maze_height, args.maze_width)
240         maze.save_image(
241             os.path.join(args.result_dir, f"oneshot_{n_epoch:04d}.png"),
242             mazes=input,
243             score_paths=losses,
244         )
245         # -------------------
246
247     gpt.train(t)
248
249
250 ######################################################################
251
252
253 class Task:
254     def batches(self, split="train"):
255         pass
256
257     def vocabulary_size(self):
258         pass
259
260     def produce_results(self, n_epoch, model):
261         pass
262
263
264 ######################################################################
265
266 import maze
267
268
269 class TaskMaze(Task):
270     def map2seq(self, *m):
271         return torch.cat([x.flatten(1) for x in m], 1)
272
273     def seq2map(self, s):
274         s = s.reshape(s.size(0), -1, self.height, self.width)
275         return (s[:, k] for k in range(s.size(1)))
276
277     def __init__(
278         self,
279         nb_train_samples,
280         nb_test_samples,
281         batch_size,
282         height,
283         width,
284         nb_walls,
285         device=torch.device("cpu"),
286     ):
287         self.batch_size = batch_size
288         self.height = height
289         self.width = width
290         self.device = device
291
292         train_mazes, train_paths, train_policies = maze.create_maze_data(
293             nb_train_samples,
294             height=height,
295             width=width,
296             nb_walls=nb_walls,
297             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
298         )
299         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
300         self.train_policies = train_policies.flatten(-2).permute(0, 2, 1).to(device)
301
302         test_mazes, test_paths, test_policies = maze.create_maze_data(
303             nb_test_samples,
304             height=height,
305             width=width,
306             nb_walls=nb_walls,
307             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
308         )
309         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
310         self.test_policies = test_policies.flatten(-2).permute(0, 2, 1).to(device)
311
312         self.nb_codes = self.train_input.max() + 1
313
314     def batches(self, split="train", nb_to_use=-1):
315         assert split in {"train", "test"}
316         input = self.train_input if split == "train" else self.test_input
317         if nb_to_use > 0:
318             input = input[:nb_to_use]
319         for batch in tqdm.tqdm(
320             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
321         ):
322             yield batch
323
324     def policy_batches(self, split="train", nb_to_use=-1):
325         assert split in {"train", "test"}
326         input = self.train_input if split == "train" else self.test_input
327         targets = self.train_policies if split == "train" else self.test_policies
328         input = input[:, : self.height * self.width]
329         targets = targets * (input != maze.v_wall)[:, :, None]
330
331         if nb_to_use > 0:
332             input = input[:nb_to_use]
333             targets = targets[:nb_to_use]
334
335         for batch in tqdm.tqdm(
336             zip(input.split(self.batch_size), targets.split(self.batch_size)),
337             dynamic_ncols=True,
338             desc=f"epoch-{split}",
339         ):
340             yield batch
341
342     def vocabulary_size(self):
343         return self.nb_codes
344
345     def compute_error(self, model, split="train", nb_to_use=-1):
346         nb_total, nb_correct = 0, 0
347         for input in task.batches(split, nb_to_use):
348             result = input.clone()
349             ar_mask = result.new_zeros(result.size())
350             ar_mask[:, self.height * self.width :] = 1
351             result *= 1 - ar_mask
352             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
353             mazes, paths = self.seq2map(result)
354             nb_correct += maze.path_correctness(mazes, paths).long().sum()
355             nb_total += mazes.size(0)
356
357         return nb_total, nb_correct
358
359     def produce_results(self, n_epoch, model):
360         with torch.autograd.no_grad():
361             t = model.training
362             model.eval()
363
364             train_nb_total, train_nb_correct = self.compute_error(
365                 model, "train", nb_to_use=1000
366             )
367             log_string(
368                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
369             )
370
371             test_nb_total, test_nb_correct = self.compute_error(
372                 model, "test", nb_to_use=1000
373             )
374             log_string(
375                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
376             )
377
378             input = self.test_input[:32]
379             result = input.clone()
380             ar_mask = result.new_zeros(result.size())
381             ar_mask[:, self.height * self.width :] = 1
382             result *= 1 - ar_mask
383             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
384
385             mazes, paths = self.seq2map(input)
386             _, predicted_paths = self.seq2map(result)
387             maze.save_image(
388                 os.path.join(args.result_dir, f"result_{n_epoch:04d}.png"),
389                 mazes=mazes,
390                 target_paths=paths,
391                 predicted_paths=predicted_paths,
392                 path_correct=maze.path_correctness(mazes, predicted_paths),
393             )
394
395             model.train(t)
396
397
398 ######################################################################
399
400 log_string(f"device {device}")
401
402
403 task = TaskMaze(
404     nb_train_samples=args.nb_train_samples,
405     nb_test_samples=args.nb_test_samples,
406     batch_size=args.batch_size,
407     height=args.maze_height,
408     width=args.maze_width,
409     nb_walls=args.maze_nb_walls,
410     device=device,
411 )
412
413
414 vocabulary_size = task.vocabulary_size()
415
416 log_string(f"vocabulary_size {vocabulary_size}")
417
418 ##############################
419
420 model = mygpt.MyGPT(
421     vocabulary_size=vocabulary_size,
422     dim_model=args.dim_model,
423     dim_keys=args.dim_keys,
424     dim_hidden=args.dim_hidden,
425     nb_heads=args.nb_heads,
426     nb_blocks=args.nb_blocks,
427     causal=True,
428     dropout=args.dropout,
429 )
430
431 model.to(device)
432
433 nb_parameters = sum(p.numel() for p in model.parameters())
434 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
435
436 ######################################################################
437
438 nb_epochs_finished = 0
439
440 if args.no_checkpoint:
441     log_string(f"not trying to load checkpoint.")
442
443 else:
444     try:
445         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
446         checkpoint = torch.load(checkpoint_name)
447         nb_epochs_finished = checkpoint["nb_epochs_finished"]
448         model.load_state_dict(checkpoint["model_state"])
449         torch.set_rng_state(checkpoint["rng_state"])
450         if torch.cuda.is_available():
451             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
452
453         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
454
455     except FileNotFoundError:
456         log_string("starting from scratch.")
457
458     except:
459         log_string("error when loading the checkpoint.")
460         exit(1)
461
462 ######################################################################
463
464 token_count = 0
465 for input in task.batches(split="train"):
466     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
467 token_probas = token_count / token_count.sum()
468 entropy = -torch.xlogy(token_probas, token_probas).sum()
469 train_set_perplexity = math.exp(entropy)
470
471 ##############################
472
473 if args.learning_rate_schedule == "cos":
474     learning_rate_schedule = {}
475     for n_epoch in range(args.nb_epochs):
476         u = n_epoch / args.nb_epochs * math.pi
477         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
478 else:
479     u = {
480         int(k): float(v)
481         for k, v in [
482             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
483         ]
484     }
485
486     learning_rate_schedule = {}
487     learning_rate = args.learning_rate
488     for n_epoch in range(args.nb_epochs):
489         if n_epoch in u:
490             learning_rate = u[n_epoch]
491         learning_rate_schedule[n_epoch] = learning_rate
492
493 log_string(f"learning_rate_schedule {learning_rate_schedule}")
494
495 ##############################
496
497 if args.one_shot:
498     one_shot(model, task)
499     exit(0)
500
501 ##############################
502
503 if nb_epochs_finished >= args.nb_epochs:
504     n_epoch = nb_epochs_finished
505     train_perplexity = compute_perplexity(model, split="train")
506     test_perplexity = compute_perplexity(model, split="test")
507
508     log_string(
509         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
510     )
511
512     task.produce_results(n_epoch, model)
513
514     exit(0)
515
516 ##############################
517
518 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
519     learning_rate = learning_rate_schedule[n_epoch]
520
521     log_string(f"learning_rate {learning_rate}")
522
523     if args.optim == "sgd":
524         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
525     elif args.optim == "adam":
526         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
527     elif args.optim == "adamw":
528         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
529     else:
530         raise ValueError(f"Unknown optimizer {args.optim}.")
531
532     model.train()
533
534     nb_train_samples, acc_train_loss = 0, 0.0
535
536     for input in task.batches(split="train"):
537         input = input.to(device)
538         output = model(mygpt.BracketedSequence(input)).x
539         loss = F.cross_entropy(output.transpose(1, 2), input)
540         acc_train_loss += loss.item() * input.size(0)
541         nb_train_samples += input.size(0)
542
543         optimizer.zero_grad()
544         loss.backward()
545         optimizer.step()
546
547     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
548     test_perplexity = compute_perplexity(model, split="test")
549
550     log_string(
551         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
552     )
553
554     task.produce_results(n_epoch, model)
555
556     checkpoint = {
557         "nb_epochs_finished": n_epoch + 1,
558         "model_state": model.state_dict(),
559         "rng_state": torch.get_rng_state(),
560     }
561
562     if torch.cuda.is_available():
563         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
564
565     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
566     torch.save(checkpoint, checkpoint_name)
567     log_string(f"saved checkpoint {checkpoint_name}")
568
569 ######################################################################