Update
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--no_checkpoint", action="store_true", default=False)
68
69 parser.add_argument("--overwrite_results", action="store_true", default=False)
70
71 parser.add_argument("--one_shot", action="store_true", default=False)
72
73 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
74
75 ##############################
76 # maze options
77
78 parser.add_argument("--maze_height", type=int, default=13)
79
80 parser.add_argument("--maze_width", type=int, default=21)
81
82 parser.add_argument("--maze_nb_walls", type=int, default=15)
83
84 ######################################################################
85
86 args = parser.parse_args()
87
88 try:
89     os.mkdir(args.result_dir)
90 except FileExistsError:
91     if not args.overwrite_results:
92         print(f"result directory {args.result_dir} already exists")
93         exit(1)
94
95 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
96
97 if args.seed >= 0:
98     # torch.backends.cudnn.deterministic = True
99     # torch.backends.cudnn.benchmark = False
100     # torch.use_deterministic_algorithms(True)
101     torch.manual_seed(args.seed)
102     if torch.cuda.is_available():
103         torch.cuda.manual_seed_all(args.seed)
104
105 ######################################################################
106
107
108 def log_string(s):
109     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
110
111     if log_file is not None:
112         log_file.write(t + s + "\n")
113         log_file.flush()
114
115     print(t + s)
116     sys.stdout.flush()
117
118
119 for n in vars(args):
120     log_string(f"args.{n} {getattr(args, n)}")
121
122 ######################################################################
123
124
125 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
126 # tokens that should be generated
127
128
129 def masked_inplace_autoregression(model, batch_size, input, ar_mask):
130     for input, ar_mask in zip(input.split(batch_size), ar_mask.split(batch_size)):
131         i = (ar_mask.sum(0) > 0).nonzero()
132         if i.min() > 0:
133             # Needed to initialize the model's cache
134             model(mygpt.BracketedSequence(input, 0, i.min()))
135         for s in range(i.min(), i.max() + 1):
136             output = model(mygpt.BracketedSequence(input, s, 1)).x
137             logits = output[:, s]
138             if args.deterministic_synthesis:
139                 t_next = logits.argmax(1)
140             else:
141                 dist = torch.distributions.categorical.Categorical(logits=logits)
142                 t_next = dist.sample()
143             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
144
145
146 ######################################################################
147
148
149 def compute_perplexity(model, split="train"):
150     with torch.autograd.no_grad():
151         t = model.training
152         model.eval()
153
154         nb_samples, acc_loss = 0, 0.0
155
156         for input in task.batches(split=split):
157             input = input.to(device)
158
159             output = model(mygpt.BracketedSequence(input)).x
160             loss = F.cross_entropy(output.transpose(1, 2), input)
161             acc_loss += loss.item() * input.size(0)
162             nb_samples += input.size(0)
163
164         model.train(t)
165
166         return math.exp(min(100, acc_loss / nb_samples))
167
168
169 ######################################################################
170
171
172 def one_shot(gpt, task):
173     t = gpt.training
174     gpt.eval()
175     model = nn.Sequential(
176         nn.Linear(args.dim_model, args.dim_model),
177         nn.ReLU(),
178         nn.Linear(args.dim_model, args.dim_model),
179         nn.ReLU(),
180         nn.Linear(args.dim_model, 4),
181     ).to(device)
182
183     for n_epoch in range(args.nb_epochs):
184         learning_rate = learning_rate_schedule[n_epoch]
185         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
186
187         acc_train_loss, nb_train_samples = 0, 0
188         for input, targets in task.policy_batches(split="train"):
189             output_gpt = gpt(mygpt.BracketedSequence(input), with_readout=False).x
190             output = model(output_gpt)
191             targets = targets * (input.unsqueeze(-1) == maze.v_empty)
192             output = output * (input.unsqueeze(-1) == maze.v_empty)
193             loss = (
194                 -(output.log_softmax(-1) * targets).sum()
195                 / (input == maze.v_empty).sum()
196                 + targets.xlogy(targets).sum() / (input == maze.v_empty).sum()
197             )
198             acc_train_loss += loss.item() * input.size(0)
199             nb_train_samples += input.size(0)
200
201             optimizer.zero_grad()
202             loss.backward()
203             optimizer.step()
204
205         acc_test_loss, nb_test_samples = 0, 0
206         for input, targets in task.policy_batches(split="test"):
207             output_gpt = gpt(mygpt.BracketedSequence(input), with_readout=False).x
208             output = model(output_gpt)
209             targets = targets * (input.unsqueeze(-1) == maze.v_empty)
210             output = output * (input.unsqueeze(-1) == maze.v_empty)
211             loss = (
212                 -(output.log_softmax(-1) * targets).sum()
213                 / (input == maze.v_empty).sum()
214                 + targets.xlogy(targets).sum() / (input == maze.v_empty).sum()
215             )
216             acc_test_loss += loss.item() * input.size(0)
217             nb_test_samples += input.size(0)
218
219         log_string(
220             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
221         )
222
223         # -------------------
224         input = task.test_input[:32, : task.height * task.width]
225         targets = task.test_policies[:32]
226         output_gpt = gpt(mygpt.BracketedSequence(input), with_readout=False).x
227         output = model(output_gpt)
228         losses = (-output.log_softmax(-1) * targets + targets.xlogy(targets)).sum(-1)
229         losses = losses * (input == maze.v_empty)
230         losses = losses / losses.max()
231         losses = losses.reshape(-1, args.maze_height, args.maze_width)
232         input = input.reshape(-1, args.maze_height, args.maze_width)
233         maze.save_image(
234             os.path.join(args.result_dir, f"oneshot_{n_epoch:04d}.png"),
235             mazes=input,
236             score_paths=losses,
237         )
238         # -------------------
239
240     gpt.train(t)
241
242
243 ######################################################################
244
245
246 class Task:
247     def batches(self, split="train"):
248         pass
249
250     def vocabulary_size(self):
251         pass
252
253     def produce_results(self, n_epoch, model):
254         pass
255
256
257 ######################################################################
258
259 import maze
260
261
262 class TaskMaze(Task):
263     def map2seq(self, *m):
264         return torch.cat([x.flatten(1) for x in m], 1)
265
266     def seq2map(self, s):
267         s = s.reshape(s.size(0), -1, self.height, self.width)
268         return (s[:, k] for k in range(s.size(1)))
269
270     def __init__(
271         self,
272         nb_train_samples,
273         nb_test_samples,
274         batch_size,
275         height,
276         width,
277         nb_walls,
278         device=torch.device("cpu"),
279     ):
280         self.batch_size = batch_size
281         self.height = height
282         self.width = width
283         self.device = device
284
285         train_mazes, train_paths, train_policies = maze.create_maze_data(
286             nb_train_samples,
287             height=height,
288             width=width,
289             nb_walls=nb_walls,
290             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
291         )
292         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
293         self.train_policies = train_policies.flatten(-2).permute(0, 2, 1).to(device)
294
295         test_mazes, test_paths, test_policies = maze.create_maze_data(
296             nb_test_samples,
297             height=height,
298             width=width,
299             nb_walls=nb_walls,
300             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
301         )
302         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
303         self.test_policies = test_policies.flatten(-2).permute(0, 2, 1).to(device)
304
305         self.nb_codes = self.train_input.max() + 1
306
307     def batches(self, split="train", nb_to_use=-1):
308         assert split in {"train", "test"}
309         input = self.train_input if split == "train" else self.test_input
310         if nb_to_use > 0:
311             input = input[:nb_to_use]
312         for batch in tqdm.tqdm(
313             input.split(self.batch_size), dynamic_ncols=True, desc=f"epoch-{split}"
314         ):
315             yield batch
316
317     def policy_batches(self, split="train", nb_to_use=-1):
318         assert split in {"train", "test"}
319         input = self.train_input if split == "train" else self.test_input
320         targets = self.train_policies if split == "train" else self.test_policies
321         input = input[:, : self.height * self.width]
322         targets = targets * (input != maze.v_wall)[:, :, None]
323
324         if nb_to_use > 0:
325             input = input[:nb_to_use]
326             targets = targets[:nb_to_use]
327
328         for batch in tqdm.tqdm(
329             zip(input.split(self.batch_size), targets.split(self.batch_size)),
330             dynamic_ncols=True,
331             desc=f"epoch-{split}",
332         ):
333             yield batch
334
335     def vocabulary_size(self):
336         return self.nb_codes
337
338     def compute_error(self, model, split="train", nb_to_use=-1):
339         nb_total, nb_correct = 0, 0
340         for input in task.batches(split, nb_to_use):
341             result = input.clone()
342             ar_mask = result.new_zeros(result.size())
343             ar_mask[:, self.height * self.width :] = 1
344             result *= 1 - ar_mask
345             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
346             mazes, paths = self.seq2map(result)
347             nb_correct += maze.path_correctness(mazes, paths).long().sum()
348             nb_total += mazes.size(0)
349
350         return nb_total, nb_correct
351
352     def produce_results(self, n_epoch, model):
353         with torch.autograd.no_grad():
354             t = model.training
355             model.eval()
356
357             train_nb_total, train_nb_correct = self.compute_error(
358                 model, "train", nb_to_use=1000
359             )
360             log_string(
361                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
362             )
363
364             test_nb_total, test_nb_correct = self.compute_error(
365                 model, "test", nb_to_use=1000
366             )
367             log_string(
368                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
369             )
370
371             input = self.test_input[:32]
372             result = input.clone()
373             ar_mask = result.new_zeros(result.size())
374             ar_mask[:, self.height * self.width :] = 1
375             result *= 1 - ar_mask
376             masked_inplace_autoregression(model, self.batch_size, result, ar_mask)
377
378             mazes, paths = self.seq2map(input)
379             _, predicted_paths = self.seq2map(result)
380             maze.save_image(
381                 os.path.join(args.result_dir, f"result_{n_epoch:04d}.png"),
382                 mazes=mazes,
383                 target_paths=paths,
384                 predicted_paths=predicted_paths,
385                 path_correct=maze.path_correctness(mazes, predicted_paths),
386             )
387
388             model.train(t)
389
390
391 ######################################################################
392
393 log_string(f"device {device}")
394
395
396 task = TaskMaze(
397     nb_train_samples=args.nb_train_samples,
398     nb_test_samples=args.nb_test_samples,
399     batch_size=args.batch_size,
400     height=args.maze_height,
401     width=args.maze_width,
402     nb_walls=args.maze_nb_walls,
403     device=device,
404 )
405
406
407 vocabulary_size = task.vocabulary_size()
408
409 log_string(f"vocabulary_size {vocabulary_size}")
410
411 ##############################
412
413 model = mygpt.MyGPT(
414     vocabulary_size=vocabulary_size,
415     dim_model=args.dim_model,
416     dim_keys=args.dim_keys,
417     dim_hidden=args.dim_hidden,
418     nb_heads=args.nb_heads,
419     nb_blocks=args.nb_blocks,
420     causal=True,
421     dropout=args.dropout,
422 )
423
424 model.to(device)
425
426 nb_parameters = sum(p.numel() for p in model.parameters())
427 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
428
429 ######################################################################
430
431 nb_epochs_finished = 0
432
433 if args.no_checkpoint:
434     log_string(f"not trying to load checkpoint.")
435
436 else:
437     try:
438         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
439         checkpoint = torch.load(checkpoint_name)
440         nb_epochs_finished = checkpoint["nb_epochs_finished"]
441         model.load_state_dict(checkpoint["model_state"])
442         torch.set_rng_state(checkpoint["rng_state"])
443         if torch.cuda.is_available():
444             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
445
446         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
447
448     except FileNotFoundError:
449         log_string("starting from scratch.")
450
451     except:
452         log_string("error when loading the checkpoint.")
453         exit(1)
454
455 ######################################################################
456
457 token_count = 0
458 for input in task.batches(split="train"):
459     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
460 token_probas = token_count / token_count.sum()
461 entropy = -torch.xlogy(token_probas, token_probas).sum()
462 train_set_perplexity = math.exp(entropy)
463
464 ##############################
465
466 if args.learning_rate_schedule == "cos":
467     learning_rate_schedule = {}
468     for n_epoch in range(args.nb_epochs):
469         u = n_epoch / args.nb_epochs * math.pi
470         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
471 else:
472     u = {
473         int(k): float(v)
474         for k, v in [
475             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
476         ]
477     }
478
479     learning_rate_schedule = {}
480     learning_rate = args.learning_rate
481     for n_epoch in range(args.nb_epochs):
482         if n_epoch in u:
483             learning_rate = u[n_epoch]
484         learning_rate_schedule[n_epoch] = learning_rate
485
486 log_string(f"learning_rate_schedule {learning_rate_schedule}")
487
488 ##############################
489
490 if args.one_shot:
491     one_shot(model, task)
492     exit(0)
493
494 ##############################
495
496 if nb_epochs_finished >= args.nb_epochs:
497     n_epoch = nb_epochs_finished
498     train_perplexity = compute_perplexity(model, split="train")
499     test_perplexity = compute_perplexity(model, split="test")
500
501     log_string(
502         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
503     )
504
505     task.produce_results(n_epoch, model)
506
507     exit(0)
508
509 ##############################
510
511 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
512     learning_rate = learning_rate_schedule[n_epoch]
513
514     log_string(f"learning_rate {learning_rate}")
515
516     if args.optim == "sgd":
517         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
518     elif args.optim == "adam":
519         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
520     elif args.optim == "adamw":
521         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
522     else:
523         raise ValueError(f"Unknown optimizer {args.optim}.")
524
525     model.train()
526
527     nb_train_samples, acc_train_loss = 0, 0.0
528
529     for input in task.batches(split="train"):
530         input = input.to(device)
531         output = model(mygpt.BracketedSequence(input)).x
532         loss = F.cross_entropy(output.transpose(1, 2), input)
533         acc_train_loss += loss.item() * input.size(0)
534         nb_train_samples += input.size(0)
535
536         optimizer.zero_grad()
537         loss.backward()
538         optimizer.step()
539
540     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
541     test_perplexity = compute_perplexity(model, split="test")
542
543     log_string(
544         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
545     )
546
547     task.produce_results(n_epoch, model)
548
549     checkpoint = {
550         "nb_epochs_finished": n_epoch + 1,
551         "model_state": model.state_dict(),
552         "rng_state": torch.get_rng_state(),
553     }
554
555     if torch.cuda.is_available():
556         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
557
558     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
559     torch.save(checkpoint, checkpoint_name)
560     log_string(f"saved checkpoint {checkpoint_name}")
561
562 ######################################################################