Update
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--random_regression_order", action="store_true", default=False)
68
69 parser.add_argument("--noncausal_prompt", action="store_true", default=False)
70
71 parser.add_argument("--no_checkpoint", action="store_true", default=False)
72
73 parser.add_argument("--overwrite_results", action="store_true", default=False)
74
75 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
76
77 ##############################
78 # maze options
79
80 parser.add_argument("--maze_height", type=int, default=13)
81
82 parser.add_argument("--maze_width", type=int, default=21)
83
84 parser.add_argument("--maze_nb_walls", type=int, default=15)
85
86 ##############################
87 # one-shot prediction
88
89 parser.add_argument("--oneshot", action="store_true", default=False)
90
91 parser.add_argument("--oneshot_input", type=str, default="head")
92
93 parser.add_argument("--oneshot_output", type=str, default="trace")
94
95 ######################################################################
96
97 args = parser.parse_args()
98
99 try:
100     os.mkdir(args.result_dir)
101 except FileExistsError:
102     if not args.overwrite_results:
103         print(f"result directory {args.result_dir} already exists")
104         exit(1)
105
106 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
107
108 if args.seed >= 0:
109     # torch.backends.cudnn.deterministic = True
110     # torch.backends.cudnn.benchmark = False
111     # torch.use_deterministic_algorithms(True)
112     torch.manual_seed(args.seed)
113     if torch.cuda.is_available():
114         torch.cuda.manual_seed_all(args.seed)
115
116 ######################################################################
117
118
119 def log_string(s):
120     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
121
122     if log_file is not None:
123         log_file.write(t + s + "\n")
124         log_file.flush()
125
126     print(t + s)
127     sys.stdout.flush()
128
129
130 for n in vars(args):
131     log_string(f"args.{n} {getattr(args, n)}")
132
133 ######################################################################
134
135
136 def reorder(x, order, reverse=False):  # x is NxTxD1x...xDk, order is NxT'
137     u = x.reshape(x.size()[:2] + (-1,))
138     order = order.unsqueeze(-1).expand(-1, -1, u.size(-1))
139     if reverse:
140         v = u.new(u.size()).scatter_(1, order, u)
141     else:
142         v = u.gather(1, order)
143     v = v.reshape(v.size()[:2] + x.size()[2:])
144     return v
145
146
147 def shuffle(x, prompt_len):
148     if args.random_regression_order:
149         order = torch.rand(x.size(), device=x.device)
150         order[:, :prompt_len] = torch.arange(-prompt_len, 0, device=x.device)
151         order = order.sort(1).indices
152     else:
153         order = (
154             torch.arange(x.size(1), device=x.device).unsqueeze(0).expand(x.size(0), -1)
155         )
156     return reorder(x, order), order
157
158
159 def eval_mygpt(model, input, mode="standard", prompt_len=0):
160     x, order = shuffle(input, prompt_len)
161     x = model(mygpt.BracketedSequence(x), mode=mode, order=order).x
162     return reorder(x, order, reverse=True)
163
164
165 ######################################################################
166
167 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
168 # tokens that should be generated
169
170
171 def masked_inplace_autoregression(model, batch_size, input, ar_mask, order=None):
172     for input, ar_mask, order in zip(
173         input.split(batch_size), ar_mask.split(batch_size), order.split(batch_size)
174     ):
175         i = (ar_mask.sum(0) > 0).nonzero()
176         if i.min() > 0:
177             # Needed to initialize the model's cache
178             model(mygpt.BracketedSequence(input, 0, i.min()), order=order)
179         for s in range(i.min(), i.max() + 1):
180             output = model(mygpt.BracketedSequence(input, s, 1), order=order).x
181             logits = output[:, s]
182             if args.deterministic_synthesis:
183                 t_next = logits.argmax(1)
184             else:
185                 dist = torch.distributions.categorical.Categorical(logits=logits)
186                 t_next = dist.sample()
187             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
188
189
190 ######################################################################
191
192
193 def compute_perplexity(model, task, prompt_len, split="train"):
194     with torch.autograd.no_grad():
195         t = model.training
196         model.eval()
197
198         nb_samples, acc_loss = 0, 0.0
199
200         for input in task.batches(split=split):
201             input = input.to(device)
202             output = eval_mygpt(model, input, prompt_len=prompt_len)
203             if args.noncausal_prompt:
204                 d = input.size(1) // 2
205                 loss = F.cross_entropy(output[:, d:].transpose(1, 2), input[:, d:])
206             else:
207                 loss = F.cross_entropy(output.transpose(1, 2), input)
208             acc_loss += loss.item() * input.size(0)
209             nb_samples += input.size(0)
210
211         model.train(t)
212
213         return math.exp(min(100, acc_loss / nb_samples))
214
215
216 ######################################################################
217
218
219 def oneshot_policy_loss(mazes, output, policies, height, width):
220     masks = (mazes == maze.v_empty).unsqueeze(-1)
221     targets = policies.permute(0, 2, 1) * masks
222     output = output * masks
223     return -(output.log_softmax(-1) * targets).sum() / masks.sum()
224
225
226 def oneshot_trace_loss(mazes, output, policies, height, width):
227     masks = mazes == maze.v_empty
228     targets = maze.stationary_densities(
229         mazes.view(-1, height, width), policies.view(-1, 4, height, width)
230     ).flatten(-2)
231     targets = targets * masks
232     output = output.squeeze(-1) * masks
233     return (output - targets).abs().sum() / masks.sum()
234
235
236 def oneshot(gpt, task):
237     t = gpt.training
238     gpt.eval()
239
240     if args.oneshot_input == "head":
241         dim_in = args.dim_model
242     elif args.oneshot_input == "deep":
243         dim_in = args.dim_model * args.nb_blocks * 2
244     else:
245         raise ValueError(f"{args.oneshot_input=}")
246
247     if args.oneshot_output == "policy":
248         dim_out = 4
249         compute_loss = oneshot_policy_loss
250     elif args.oneshot_output == "trace":
251         dim_out = 1
252         compute_loss = oneshot_trace_loss
253     else:
254         raise ValueError(f"{args.oneshot_output=}")
255
256     model = nn.Sequential(
257         nn.Linear(dim_in, args.dim_model),
258         nn.ReLU(),
259         nn.Linear(args.dim_model, args.dim_model),
260         nn.ReLU(),
261         nn.Linear(args.dim_model, dim_out),
262     ).to(device)
263
264     for n_epoch in range(args.nb_epochs):
265         learning_rate = learning_rate_schedule[n_epoch]
266         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
267
268         acc_train_loss, nb_train_samples = 0, 0
269         for mazes, policies in task.policy_batches(split="train"):
270             output_gpt = eval_mygpt(
271                 gpt, mazes, mode=args.oneshot_input, prompt_len=task.height * task.width
272             )
273             output = model(output_gpt)
274
275             loss = compute_loss(mazes, output, policies, task.height, task.width)
276             acc_train_loss += loss.item() * mazes.size(0)
277             nb_train_samples += mazes.size(0)
278
279             optimizer.zero_grad()
280             loss.backward()
281             optimizer.step()
282
283         acc_test_loss, nb_test_samples = 0, 0
284         for mazes, policies in task.policy_batches(split="test"):
285             output_gpt = eval_mygpt(
286                 gpt, mazes, mode=args.oneshot_input, prompt_len=task.height * task.width
287             )
288             output = model(output_gpt)
289             loss = compute_loss(mazes, output, policies, task.height, task.width)
290             acc_test_loss += loss.item() * mazes.size(0)
291             nb_test_samples += mazes.size(0)
292
293         log_string(
294             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
295         )
296
297         # -------------------
298         mazes = task.test_input[:32, : task.height * task.width]
299         policies = task.test_policies[:32]
300         output_gpt = eval_mygpt(
301             gpt, mazes, mode=args.oneshot_input, prompt_len=task.height * task.width
302         )
303         output = model(output_gpt)
304         if args.oneshot_output == "policy":
305             targets = policies.permute(0, 2, 1)
306             scores = (
307                 (F.one_hot(output.argmax(-1), num_classes=4) * targets).sum(-1) == 0
308             ).float()
309         elif args.oneshot_output == "trace":
310             targets = maze.stationary_densities(
311                 mazes.view(-1, task.height, task.width),
312                 policies.view(-1, 4, task.height, task.width),
313             ).flatten(-2)
314             scores = output
315         else:
316             raise ValueError(f"{args.oneshot_output=}")
317
318         scores = scores.reshape(-1, task.height, task.width)
319         mazes = mazes.reshape(-1, task.height, task.width)
320         targets = targets.reshape(-1, task.height, task.width)
321         filename = (
322             f"oneshot_{args.oneshot_input}_{args.oneshot_output}_{n_epoch:04d}.png"
323         )
324         maze.save_image(
325             os.path.join(args.result_dir, filename),
326             mazes=mazes,
327             score_paths=scores,
328             score_truth=targets,
329         )
330         log_string(f"wrote {filename}")
331
332         # -------------------
333
334     gpt.train(t)
335
336
337 ######################################################################
338
339
340 class Task:
341     def batches(self, split="train", nb_to_use=-1, desc=None):
342         pass
343
344     def vocabulary_size(self):
345         pass
346
347     def produce_results(self, n_epoch, model):
348         pass
349
350
351 ######################################################################
352
353 import maze
354
355
356 class TaskMaze(Task):
357     def map2seq(self, *m):
358         return torch.cat([x.flatten(1) for x in m], 1)
359
360     def seq2map(self, s):
361         s = s.reshape(s.size(0), -1, self.height, self.width)
362         return (s[:, k] for k in range(s.size(1)))
363
364     def __init__(
365         self,
366         nb_train_samples,
367         nb_test_samples,
368         batch_size,
369         height,
370         width,
371         nb_walls,
372         device=torch.device("cpu"),
373     ):
374         self.batch_size = batch_size
375         self.height = height
376         self.width = width
377         self.device = device
378
379         train_mazes, train_paths, train_policies = maze.create_maze_data(
380             nb_train_samples,
381             height=height,
382             width=width,
383             nb_walls=nb_walls,
384             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
385         )
386         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
387         self.train_policies = train_policies.flatten(-2).to(device)
388
389         test_mazes, test_paths, test_policies = maze.create_maze_data(
390             nb_test_samples,
391             height=height,
392             width=width,
393             nb_walls=nb_walls,
394             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
395         )
396         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
397         self.test_policies = test_policies.flatten(-2).to(device)
398
399         self.nb_codes = self.train_input.max() + 1
400
401     def batches(self, split="train", nb_to_use=-1, desc=None):
402         assert split in {"train", "test"}
403         input = self.train_input if split == "train" else self.test_input
404         if nb_to_use > 0:
405             input = input[:nb_to_use]
406         if desc is None:
407             desc = f"epoch-{split}"
408         for batch in tqdm.tqdm(
409             input.split(self.batch_size), dynamic_ncols=True, desc=desc
410         ):
411             yield batch
412
413     def policy_batches(self, split="train", nb_to_use=-1, desc=None):
414         assert split in {"train", "test"}
415         input = self.train_input if split == "train" else self.test_input
416         policies = self.train_policies if split == "train" else self.test_policies
417         input = input[:, : self.height * self.width]
418         policies = policies * (input != maze.v_wall)[:, None]
419
420         if nb_to_use > 0:
421             input = input[:nb_to_use]
422             policies = policies[:nb_to_use]
423
424         if desc is None:
425             desc = f"epoch-{split}"
426         for batch in tqdm.tqdm(
427             zip(input.split(self.batch_size), policies.split(self.batch_size)),
428             dynamic_ncols=True,
429             desc=desc,
430         ):
431             yield batch
432
433     def vocabulary_size(self):
434         return self.nb_codes
435
436     def compute_error(self, model, split="train", nb_to_use=-1):
437         nb_total, nb_correct = 0, 0
438         for input in task.batches(split, nb_to_use):
439             result = input.clone()
440             ar_mask = result.new_zeros(result.size())
441             ar_mask[:, self.height * self.width :] = 1
442             result *= 1 - ar_mask
443             x, order = shuffle(result, self.height * self.width)
444             masked_inplace_autoregression(
445                 model, self.batch_size, x, ar_mask, order=order
446             )
447             result = reorder(x, order, reverse=True)
448             mazes, paths = self.seq2map(result)
449             nb_correct += maze.path_correctness(mazes, paths).long().sum()
450             nb_total += mazes.size(0)
451
452         return nb_total, nb_correct
453
454     def produce_results(self, n_epoch, model):
455         with torch.autograd.no_grad():
456             t = model.training
457             model.eval()
458
459             train_nb_total, train_nb_correct = self.compute_error(
460                 model, "train", nb_to_use=1000
461             )
462             log_string(
463                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
464             )
465
466             test_nb_total, test_nb_correct = self.compute_error(
467                 model, "test", nb_to_use=1000
468             )
469             log_string(
470                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
471             )
472
473             input = self.test_input[:32]
474             result = input.clone()
475             ar_mask = result.new_zeros(result.size())
476             ar_mask[:, self.height * self.width :] = 1
477             result *= 1 - ar_mask
478             x, order = shuffle(result, self.height * self.width)
479             masked_inplace_autoregression(
480                 model, self.batch_size, x, ar_mask, order=order
481             )
482             result = reorder(x, order, reverse=True)
483
484             mazes, paths = self.seq2map(input)
485             _, predicted_paths = self.seq2map(result)
486             filename = f"result_{n_epoch:04d}.png"
487             maze.save_image(
488                 os.path.join(args.result_dir, filename),
489                 mazes=mazes,
490                 target_paths=paths,
491                 predicted_paths=predicted_paths,
492                 path_correct=maze.path_correctness(mazes, predicted_paths),
493             )
494             log_string(f"wrote {filename}")
495
496             model.train(t)
497
498
499 ######################################################################
500
501 log_string(f"device {device}")
502
503
504 task = TaskMaze(
505     nb_train_samples=args.nb_train_samples,
506     nb_test_samples=args.nb_test_samples,
507     batch_size=args.batch_size,
508     height=args.maze_height,
509     width=args.maze_width,
510     nb_walls=args.maze_nb_walls,
511     device=device,
512 )
513
514
515 vocabulary_size = task.vocabulary_size()
516
517 log_string(f"vocabulary_size {vocabulary_size}")
518
519 ##############################
520
521
522 def noncausal_prompt_amm_generator(d):
523     q = torch.arange(d)[:, None]
524     k = torch.arange(d)[None, :]
525     s = args.maze_height * args.maze_width
526     #    return torch.logical_and(q < k, torch.logical_or(q >= s, k >= s))
527     return q < k
528
529
530 amm_generator = None
531
532 if args.noncausal_prompt:
533     amm_generator = noncausal_prompt_amm_generator
534
535 model = mygpt.MyGPT(
536     vocabulary_size=vocabulary_size,
537     dim_model=args.dim_model,
538     dim_keys=args.dim_keys,
539     dim_hidden=args.dim_hidden,
540     nb_heads=args.nb_heads,
541     nb_blocks=args.nb_blocks,
542     causal=True,
543     dropout=args.dropout,
544     amm_generator=amm_generator,
545 )
546
547 model.to(device)
548
549 nb_parameters = sum(p.numel() for p in model.parameters())
550 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
551
552 ######################################################################
553
554 nb_epochs_finished = 0
555
556 if args.no_checkpoint:
557     log_string(f"not trying to load checkpoint.")
558
559 else:
560     try:
561         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
562         checkpoint = torch.load(checkpoint_name)
563         nb_epochs_finished = checkpoint["nb_epochs_finished"]
564         model.load_state_dict(checkpoint["model_state"])
565         torch.set_rng_state(checkpoint["rng_state"])
566         if torch.cuda.is_available():
567             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
568
569         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
570
571     except FileNotFoundError:
572         log_string("starting from scratch.")
573
574     except:
575         log_string("error when loading the checkpoint.")
576         exit(1)
577
578 ######################################################################
579
580 token_count = 0
581 for input in task.batches(split="train"):
582     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
583 token_probas = token_count / token_count.sum()
584 entropy = -torch.xlogy(token_probas, token_probas).sum()
585 train_set_perplexity = math.exp(entropy)
586
587 ##############################
588
589 if args.learning_rate_schedule == "cos":
590     learning_rate_schedule = {}
591     for n_epoch in range(args.nb_epochs):
592         u = n_epoch / args.nb_epochs * math.pi
593         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
594 else:
595     u = {
596         int(k): float(v)
597         for k, v in [
598             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
599         ]
600     }
601
602     learning_rate_schedule = {}
603     learning_rate = args.learning_rate
604     for n_epoch in range(args.nb_epochs):
605         if n_epoch in u:
606             learning_rate = u[n_epoch]
607         learning_rate_schedule[n_epoch] = learning_rate
608
609 log_string(f"learning_rate_schedule {learning_rate_schedule}")
610
611 ##############################
612
613 if nb_epochs_finished >= args.nb_epochs:
614     n_epoch = nb_epochs_finished
615     train_perplexity = compute_perplexity(
616         model, task, prompt_len=task.height * task.width, split="train"
617     )
618     test_perplexity = compute_perplexity(
619         model, task, prompt_len=task.height * task.width, split="test"
620     )
621
622     log_string(
623         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
624     )
625
626     task.produce_results(n_epoch, model)
627
628 ##############################
629
630 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
631     learning_rate = learning_rate_schedule[n_epoch]
632
633     log_string(f"learning_rate {learning_rate}")
634
635     if args.optim == "sgd":
636         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
637     elif args.optim == "adam":
638         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
639     elif args.optim == "adamw":
640         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
641     else:
642         raise ValueError(f"{args.optim=}")
643
644     model.train()
645
646     nb_train_samples, acc_train_loss = 0, 0.0
647
648     for input in task.batches(split="train"):
649         input = input.to(device)
650         output = eval_mygpt(model, input, prompt_len=task.height * task.width)
651         if args.noncausal_prompt:
652             d = input.size(1) // 2
653             loss = F.cross_entropy(output[:, d:].transpose(1, 2), input[:, d:])
654         else:
655             loss = F.cross_entropy(output.transpose(1, 2), input)
656         acc_train_loss += loss.item() * input.size(0)
657         nb_train_samples += input.size(0)
658
659         optimizer.zero_grad()
660         loss.backward()
661         optimizer.step()
662
663     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
664     test_perplexity = compute_perplexity(
665         model, task, prompt_len=task.height * task.width, split="test"
666     )
667
668     log_string(
669         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
670     )
671
672     task.produce_results(n_epoch, model)
673
674     checkpoint = {
675         "nb_epochs_finished": n_epoch + 1,
676         "model_state": model.state_dict(),
677         "rng_state": torch.get_rng_state(),
678     }
679
680     if torch.cuda.is_available():
681         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
682
683     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
684     torch.save(checkpoint, checkpoint_name)
685     log_string(f"saved checkpoint {checkpoint_name}")
686
687 ######################################################################
688
689 if args.oneshot:
690     oneshot(model, task)
691
692 ######################################################################