Update
[beaver.git] / beaver.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 # torch.backends.cuda.matmul.allow_tf23
9 # torch.autocast(torch.bfloat16)
10
11 import math, sys, argparse, time, tqdm, itertools, os
12
13 import torch, torchvision
14 from torch import nn
15 from torch.nn import functional as F
16
17 import mygpt, tensorstack
18
19 ######################################################################
20
21 if torch.cuda.is_available():
22     device = torch.device("cuda")
23     torch.backends.cuda.matmul.allow_tf32 = True
24 else:
25     device = torch.device("cpu")
26
27 ######################################################################
28
29 parser = argparse.ArgumentParser(description="A maze shortest path solving with a GPT.")
30
31 parser.add_argument("--log_filename", type=str, default="train.log")
32
33 parser.add_argument("--result_dir", type=str, default="results_default")
34
35 parser.add_argument("--seed", type=int, default=0)
36
37 parser.add_argument("--nb_epochs", type=int, default=25)
38
39 parser.add_argument("--nb_train_samples", type=int, default=200000)
40
41 parser.add_argument("--nb_test_samples", type=int, default=50000)
42
43 parser.add_argument("--batch_size", type=int, default=25)
44
45 parser.add_argument("--optim", type=str, default="adam")
46
47 parser.add_argument("--learning_rate", type=float, default=1e-3)
48
49 parser.add_argument(
50     "--learning_rate_schedule", type=str, default="10: 2e-4,20: 4e-5,30: 8e-6"
51 )
52
53 parser.add_argument("--dim_model", type=int, default=512)
54
55 parser.add_argument("--dim_keys", type=int, default=64)
56
57 parser.add_argument("--dim_hidden", type=int, default=2048)
58
59 parser.add_argument("--nb_heads", type=int, default=8)
60
61 parser.add_argument("--nb_blocks", type=int, default=12)
62
63 parser.add_argument("--dropout", type=float, default=0.1)
64
65 parser.add_argument("--deterministic_synthesis", action="store_true", default=False)
66
67 parser.add_argument("--random_regression_order", action="store_true", default=False)
68
69 parser.add_argument("--noncausal_prompt", action="store_true", default=False)
70
71 parser.add_argument("--no_checkpoint", action="store_true", default=False)
72
73 parser.add_argument("--overwrite_results", action="store_true", default=False)
74
75 parser.add_argument("--checkpoint_name", type=str, default="checkpoint.pth")
76
77 ##############################
78 # maze options
79
80 parser.add_argument("--maze_height", type=int, default=13)
81
82 parser.add_argument("--maze_width", type=int, default=21)
83
84 parser.add_argument("--maze_nb_walls", type=int, default=15)
85
86 ##############################
87 # one-shot prediction
88
89 parser.add_argument("--oneshot", action="store_true", default=False)
90
91 parser.add_argument("--oneshot_input", type=str, default="head")
92
93 parser.add_argument("--oneshot_output", type=str, default="trace")
94
95 ######################################################################
96
97 args = parser.parse_args()
98
99 try:
100     os.mkdir(args.result_dir)
101 except FileExistsError:
102     if not args.overwrite_results:
103         print(f"result directory {args.result_dir} already exists")
104         exit(1)
105
106 log_file = open(os.path.join(args.result_dir, args.log_filename), "a")
107
108 if args.seed >= 0:
109     # torch.backends.cudnn.deterministic = True
110     # torch.backends.cudnn.benchmark = False
111     # torch.use_deterministic_algorithms(True)
112     torch.manual_seed(args.seed)
113     if torch.cuda.is_available():
114         torch.cuda.manual_seed_all(args.seed)
115
116 ######################################################################
117
118
119 def log_string(s):
120     t = time.strftime("%Y%m%d-%H:%M:%S ", time.localtime())
121
122     if log_file is not None:
123         log_file.write(t + s + "\n")
124         log_file.flush()
125
126     print(t + s)
127     sys.stdout.flush()
128
129
130 for n in vars(args):
131     log_string(f"args.{n} {getattr(args, n)}")
132
133 ######################################################################
134
135
136 def generation_order(x, prompt_len=0):
137     if args.random_regression_order:
138         order = torch.rand(x.size(), device=x.device)
139         order[:, :prompt_len] = torch.arange(-prompt_len, 0, device=x.device)
140         order = order.sort(1).indices
141     else:
142         order = (
143             torch.arange(x.size(1), device=x.device).unsqueeze(0).expand(x.size(0), -1)
144         )
145     return order
146
147
148 def reorder(x, order, reverse=False):  # x is NxTxD1x...xDk, order is NxT'
149     u = x.reshape(x.size()[:2] + (-1,))
150     order = order.unsqueeze(-1).expand(-1, -1, u.size(-1))
151     if reverse:
152         v = u.new(u.size()).scatter_(1, order, u)
153     else:
154         v = u.gather(1, order)
155     v = v.reshape(v.size()[:2] + x.size()[2:])
156     return v
157
158
159 def shuffle(x, prompt_len):
160     order = generation_order(x, prompt_len)
161     return reorder(x, order), order
162
163
164 def eval_mygpt(model, input, mode="standard", prompt_len=0):
165     x, order = shuffle(input, prompt_len)
166     x = model(mygpt.BracketedSequence(x), mode=mode, order=order).x
167     return reorder(x, order, reverse=True)
168
169
170 ######################################################################
171
172 # ar_mask is a Boolean matrix of same shape as input, with 1s on the
173 # tokens that should be generated
174
175
176 def masked_inplace_autoregression(model, batch_size, input, ar_mask, order=None):
177     for input, ar_mask, order in zip(
178         input.split(batch_size), ar_mask.split(batch_size), order.split(batch_size)
179     ):
180         i = (ar_mask.sum(0) > 0).nonzero()
181         if i.min() > 0:
182             # Needed to initialize the model's cache
183             model(mygpt.BracketedSequence(input, 0, i.min()), order=order)
184         for s in range(i.min(), i.max() + 1):
185             output = model(mygpt.BracketedSequence(input, s, 1), order=order).x
186             logits = output[:, s]
187             if args.deterministic_synthesis:
188                 t_next = logits.argmax(1)
189             else:
190                 dist = torch.distributions.categorical.Categorical(logits=logits)
191                 t_next = dist.sample()
192             input[:, s] = ar_mask[:, s] * t_next + (1 - ar_mask[:, s]) * input[:, s]
193
194
195 ######################################################################
196
197
198 def compute_perplexity(model, task, prompt_len, split="train"):
199     with torch.autograd.no_grad():
200         t = model.training
201         model.eval()
202
203         nb_samples, acc_loss = 0, 0.0
204
205         for input in task.batches(split=split):
206             input = input.to(device)
207             output = eval_mygpt(model, input, prompt_len=prompt_len)
208             if args.noncausal_prompt:
209                 d = input.size(1) // 2
210                 loss = F.cross_entropy(output[:, d:].transpose(1, 2), input[:, d:])
211             else:
212                 loss = F.cross_entropy(output.transpose(1, 2), input)
213             acc_loss += loss.item() * input.size(0)
214             nb_samples += input.size(0)
215
216         model.train(t)
217
218         return math.exp(min(100, acc_loss / nb_samples))
219
220
221 ######################################################################
222
223
224 def oneshot_policy_loss(mazes, output, policies, height, width):
225     masks = (mazes == maze.v_empty).unsqueeze(-1)
226     targets = policies.permute(0, 2, 1) * masks
227     output = output * masks
228     return -(output.log_softmax(-1) * targets).sum() / masks.sum()
229
230
231 def oneshot_trace_loss(mazes, output, policies, height, width):
232     masks = mazes == maze.v_empty
233     targets = maze.stationary_densities(
234         mazes.view(-1, height, width), policies.view(-1, 4, height, width)
235     ).flatten(-2)
236     targets = targets * masks
237     output = output.squeeze(-1) * masks
238     return (output - targets).abs().sum() / masks.sum()
239
240
241 def oneshot(gpt, task):
242     t = gpt.training
243     gpt.eval()
244
245     if args.oneshot_input == "head":
246         dim_in = args.dim_model
247     elif args.oneshot_input == "deep":
248         dim_in = args.dim_model * args.nb_blocks * 2
249     else:
250         raise ValueError(f"{args.oneshot_input=}")
251
252     if args.oneshot_output == "policy":
253         dim_out = 4
254         compute_loss = oneshot_policy_loss
255     elif args.oneshot_output == "trace":
256         dim_out = 1
257         compute_loss = oneshot_trace_loss
258     else:
259         raise ValueError(f"{args.oneshot_output=}")
260
261     model = nn.Sequential(
262         nn.Linear(dim_in, args.dim_model),
263         nn.ReLU(),
264         nn.Linear(args.dim_model, args.dim_model),
265         nn.ReLU(),
266         nn.Linear(args.dim_model, dim_out),
267     ).to(device)
268
269     for n_epoch in range(args.nb_epochs):
270         learning_rate = learning_rate_schedule[n_epoch]
271         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
272
273         acc_train_loss, nb_train_samples = 0, 0
274         for mazes, policies in task.policy_batches(split="train"):
275             output_gpt = eval_mygpt(
276                 gpt, mazes, mode=args.oneshot_input, prompt_len=task.height * task.width
277             )
278             output = model(output_gpt)
279
280             loss = compute_loss(mazes, output, policies, task.height, task.width)
281             acc_train_loss += loss.item() * mazes.size(0)
282             nb_train_samples += mazes.size(0)
283
284             optimizer.zero_grad()
285             loss.backward()
286             optimizer.step()
287
288         acc_test_loss, nb_test_samples = 0, 0
289         for mazes, policies in task.policy_batches(split="test"):
290             output_gpt = eval_mygpt(
291                 gpt, mazes, mode=args.oneshot_input, prompt_len=task.height * task.width
292             )
293             output = model(output_gpt)
294             loss = compute_loss(mazes, output, policies, task.height, task.width)
295             acc_test_loss += loss.item() * mazes.size(0)
296             nb_test_samples += mazes.size(0)
297
298         log_string(
299             f"diff_ce {n_epoch} train {acc_train_loss/nb_train_samples} test {acc_test_loss/nb_test_samples}"
300         )
301
302         # -------------------
303         mazes = task.test_input[:32, : task.height * task.width]
304         policies = task.test_policies[:32]
305         output_gpt = eval_mygpt(
306             gpt, mazes, mode=args.oneshot_input, prompt_len=task.height * task.width
307         )
308         output = model(output_gpt)
309         if args.oneshot_output == "policy":
310             targets = policies.permute(0, 2, 1)
311             scores = (
312                 (F.one_hot(output.argmax(-1), num_classes=4) * targets).sum(-1) == 0
313             ).float()
314         elif args.oneshot_output == "trace":
315             targets = maze.stationary_densities(
316                 mazes.view(-1, task.height, task.width),
317                 policies.view(-1, 4, task.height, task.width),
318             ).flatten(-2)
319             scores = output
320         else:
321             raise ValueError(f"{args.oneshot_output=}")
322
323         scores = scores.reshape(-1, task.height, task.width)
324         mazes = mazes.reshape(-1, task.height, task.width)
325         targets = targets.reshape(-1, task.height, task.width)
326         filename = (
327             f"oneshot_{args.oneshot_input}_{args.oneshot_output}_{n_epoch:04d}.png"
328         )
329         maze.save_image(
330             os.path.join(args.result_dir, filename),
331             mazes=mazes,
332             score_paths=scores,
333             score_truth=targets,
334         )
335         log_string(f"wrote {filename}")
336
337         # -------------------
338
339     gpt.train(t)
340
341
342 ######################################################################
343
344
345 class Task:
346     def batches(self, split="train", nb_to_use=-1, desc=None):
347         pass
348
349     def vocabulary_size(self):
350         pass
351
352     def produce_results(self, n_epoch, model):
353         pass
354
355
356 ######################################################################
357
358 import maze
359
360
361 class TaskMaze(Task):
362     def map2seq(self, *m):
363         return torch.cat([x.flatten(1) for x in m], 1)
364
365     def seq2map(self, s):
366         s = s.reshape(s.size(0), -1, self.height, self.width)
367         return (s[:, k] for k in range(s.size(1)))
368
369     def __init__(
370         self,
371         nb_train_samples,
372         nb_test_samples,
373         batch_size,
374         height,
375         width,
376         nb_walls,
377         device=torch.device("cpu"),
378     ):
379         self.batch_size = batch_size
380         self.height = height
381         self.width = width
382         self.device = device
383
384         train_mazes, train_paths, train_policies = maze.create_maze_data(
385             nb_train_samples,
386             height=height,
387             width=width,
388             nb_walls=nb_walls,
389             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-train"),
390         )
391         self.train_input = self.map2seq(train_mazes.to(device), train_paths.to(device))
392         self.train_policies = train_policies.flatten(-2).to(device)
393
394         test_mazes, test_paths, test_policies = maze.create_maze_data(
395             nb_test_samples,
396             height=height,
397             width=width,
398             nb_walls=nb_walls,
399             progress_bar=lambda x: tqdm.tqdm(x, dynamic_ncols=True, desc=f"data-test"),
400         )
401         self.test_input = self.map2seq(test_mazes.to(device), test_paths.to(device))
402         self.test_policies = test_policies.flatten(-2).to(device)
403
404         self.nb_codes = self.train_input.max() + 1
405
406     def batches(self, split="train", nb_to_use=-1, desc=None):
407         assert split in {"train", "test"}
408         input = self.train_input if split == "train" else self.test_input
409         if nb_to_use > 0:
410             input = input[:nb_to_use]
411         if desc is None:
412             desc = f"epoch-{split}"
413         for batch in tqdm.tqdm(
414             input.split(self.batch_size), dynamic_ncols=True, desc=desc
415         ):
416             yield batch
417
418     def policy_batches(self, split="train", nb_to_use=-1, desc=None):
419         assert split in {"train", "test"}
420         input = self.train_input if split == "train" else self.test_input
421         policies = self.train_policies if split == "train" else self.test_policies
422         input = input[:, : self.height * self.width]
423         policies = policies * (input != maze.v_wall)[:, None]
424
425         if nb_to_use > 0:
426             input = input[:nb_to_use]
427             policies = policies[:nb_to_use]
428
429         if desc is None:
430             desc = f"epoch-{split}"
431         for batch in tqdm.tqdm(
432             zip(input.split(self.batch_size), policies.split(self.batch_size)),
433             dynamic_ncols=True,
434             desc=desc,
435         ):
436             yield batch
437
438     def vocabulary_size(self):
439         return self.nb_codes
440
441     def compute_error(self, model, split="train", nb_to_use=-1):
442         nb_total, nb_correct = 0, 0
443         for input in task.batches(split, nb_to_use):
444             result = input.clone()
445             ar_mask = result.new_zeros(result.size())
446             ar_mask[:, self.height * self.width :] = 1
447             result *= 1 - ar_mask
448             x, order = shuffle(result, self.height * self.width)
449             masked_inplace_autoregression(
450                 model, self.batch_size, x, ar_mask, order=order
451             )
452             result = reorder(x, order, reverse=True)
453             mazes, paths = self.seq2map(result)
454             nb_correct += maze.path_correctness(mazes, paths).long().sum()
455             nb_total += mazes.size(0)
456
457         return nb_total, nb_correct
458
459     def produce_results(self, n_epoch, model):
460         with torch.autograd.no_grad():
461             t = model.training
462             model.eval()
463
464             train_nb_total, train_nb_correct = self.compute_error(
465                 model, "train", nb_to_use=1000
466             )
467             log_string(
468                 f"accuracy_train nb_total {train_nb_total} nb_correct {train_nb_correct} accuracy {(100.0*train_nb_correct)/train_nb_total:.02f}%"
469             )
470
471             test_nb_total, test_nb_correct = self.compute_error(
472                 model, "test", nb_to_use=1000
473             )
474             log_string(
475                 f"accuracy_test nb_total {test_nb_total} nb_correct {test_nb_correct} accuracy {(100.0*test_nb_correct)/test_nb_total:.02f}%"
476             )
477
478             input = self.test_input[:32]
479             result = input.clone()
480             ar_mask = result.new_zeros(result.size())
481             ar_mask[:, self.height * self.width :] = 1
482             result *= 1 - ar_mask
483             x, order = shuffle(result, self.height * self.width)
484             masked_inplace_autoregression(
485                 model, self.batch_size, x, ar_mask, order=order
486             )
487             result = reorder(x, order, reverse=True)
488
489             mazes, paths = self.seq2map(input)
490             _, predicted_paths = self.seq2map(result)
491             filename = f"result_{n_epoch:04d}.png"
492             maze.save_image(
493                 os.path.join(args.result_dir, filename),
494                 mazes=mazes,
495                 target_paths=paths,
496                 predicted_paths=predicted_paths,
497                 path_correct=maze.path_correctness(mazes, predicted_paths),
498             )
499             log_string(f"wrote {filename}")
500
501             model.train(t)
502
503
504 ######################################################################
505
506 log_string(f"device {device}")
507
508
509 task = TaskMaze(
510     nb_train_samples=args.nb_train_samples,
511     nb_test_samples=args.nb_test_samples,
512     batch_size=args.batch_size,
513     height=args.maze_height,
514     width=args.maze_width,
515     nb_walls=args.maze_nb_walls,
516     device=device,
517 )
518
519
520 vocabulary_size = task.vocabulary_size()
521
522 log_string(f"vocabulary_size {vocabulary_size}")
523
524 ##############################
525
526
527 def noncausal_prompt_amm_generator(d):
528     q = torch.arange(d)[:, None]
529     k = torch.arange(d)[None, :]
530     s = args.maze_height * args.maze_width
531     #    return torch.logical_and(q < k, torch.logical_or(q >= s, k >= s))
532     return q < k
533
534
535 amm_generator = None
536
537 if args.noncausal_prompt:
538     amm_generator = noncausal_prompt_amm_generator
539
540 model = mygpt.MyGPT(
541     vocabulary_size=vocabulary_size,
542     dim_model=args.dim_model,
543     dim_keys=args.dim_keys,
544     dim_hidden=args.dim_hidden,
545     nb_heads=args.nb_heads,
546     nb_blocks=args.nb_blocks,
547     causal=True,
548     dropout=args.dropout,
549     amm_generator=amm_generator,
550 )
551
552 model.to(device)
553
554 nb_parameters = sum(p.numel() for p in model.parameters())
555 log_string(f"nb_parameters {nb_parameters} ({int(nb_parameters/1e6)}M)")
556
557 ######################################################################
558
559 nb_epochs_finished = 0
560
561 if args.no_checkpoint:
562     log_string(f"not trying to load checkpoint.")
563
564 else:
565     try:
566         checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
567         checkpoint = torch.load(checkpoint_name)
568         nb_epochs_finished = checkpoint["nb_epochs_finished"]
569         model.load_state_dict(checkpoint["model_state"])
570         torch.set_rng_state(checkpoint["rng_state"])
571         if torch.cuda.is_available():
572             torch.cuda.set_rng_state(checkpoint["cuda_rng_state"])
573
574         log_string(f"checkpoint loaded with {nb_epochs_finished} epochs finished.")
575
576     except FileNotFoundError:
577         log_string("starting from scratch.")
578
579     except:
580         log_string("error when loading the checkpoint.")
581         exit(1)
582
583 ######################################################################
584
585 token_count = 0
586 for input in task.batches(split="train"):
587     token_count += F.one_hot(input, num_classes=task.vocabulary_size()).sum((0, 1))
588 token_probas = token_count / token_count.sum()
589 entropy = -torch.xlogy(token_probas, token_probas).sum()
590 train_set_perplexity = math.exp(entropy)
591
592 ##############################
593
594 if args.learning_rate_schedule == "cos":
595     learning_rate_schedule = {}
596     for n_epoch in range(args.nb_epochs):
597         u = n_epoch / args.nb_epochs * math.pi
598         learning_rate_schedule[n_epoch] = args.learning_rate * 0.5 * (1 + math.cos(u))
599 else:
600     u = {
601         int(k): float(v)
602         for k, v in [
603             tuple(x.split(":")) for x in args.learning_rate_schedule.split(",")
604         ]
605     }
606
607     learning_rate_schedule = {}
608     learning_rate = args.learning_rate
609     for n_epoch in range(args.nb_epochs):
610         if n_epoch in u:
611             learning_rate = u[n_epoch]
612         learning_rate_schedule[n_epoch] = learning_rate
613
614 log_string(f"learning_rate_schedule {learning_rate_schedule}")
615
616 ##############################
617
618 if nb_epochs_finished >= args.nb_epochs:
619     n_epoch = nb_epochs_finished
620     train_perplexity = compute_perplexity(
621         model, task, prompt_len=task.height * task.width, split="train"
622     )
623     test_perplexity = compute_perplexity(
624         model, task, prompt_len=task.height * task.width, split="test"
625     )
626
627     log_string(
628         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
629     )
630
631     task.produce_results(n_epoch, model)
632
633 ##############################
634
635 for n_epoch in range(nb_epochs_finished, args.nb_epochs):
636     learning_rate = learning_rate_schedule[n_epoch]
637
638     log_string(f"learning_rate {learning_rate}")
639
640     if args.optim == "sgd":
641         optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
642     elif args.optim == "adam":
643         optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
644     elif args.optim == "adamw":
645         optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
646     else:
647         raise ValueError(f"{args.optim=}")
648
649     model.train()
650
651     nb_train_samples, acc_train_loss = 0, 0.0
652
653     for input in task.batches(split="train"):
654         input = input.to(device)
655         output = eval_mygpt(model, input, prompt_len=task.height * task.width)
656         if args.noncausal_prompt:
657             d = input.size(1) // 2
658             loss = F.cross_entropy(output[:, d:].transpose(1, 2), input[:, d:])
659         else:
660             loss = F.cross_entropy(output.transpose(1, 2), input)
661         acc_train_loss += loss.item() * input.size(0)
662         nb_train_samples += input.size(0)
663
664         optimizer.zero_grad()
665         loss.backward()
666         optimizer.step()
667
668     train_perplexity = math.exp(min(100, acc_train_loss / nb_train_samples))
669     test_perplexity = compute_perplexity(
670         model, task, prompt_len=task.height * task.width, split="test"
671     )
672
673     log_string(
674         f"perplexity {n_epoch} train_set {train_set_perplexity} train_prediction {train_perplexity} test_prediction {test_perplexity}"
675     )
676
677     task.produce_results(n_epoch, model)
678
679     checkpoint = {
680         "nb_epochs_finished": n_epoch + 1,
681         "model_state": model.state_dict(),
682         "rng_state": torch.get_rng_state(),
683     }
684
685     if torch.cuda.is_available():
686         checkpoint["cuda_rng_state"] = torch.cuda.get_rng_state()
687
688     checkpoint_name = os.path.join(args.result_dir, args.checkpoint_name)
689     torch.save(checkpoint, checkpoint_name)
690     log_string(f"saved checkpoint {checkpoint_name}")
691
692 ######################################################################
693
694 if args.oneshot:
695     oneshot(model, task)
696
697 ######################################################################